首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic hypoxia increases the sensitivity of the central nervous system to afferent input from carotid body chemoreceptors. We hypothesized that this process involves N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms and predicted that chronic hypoxia would change the effect of the NMDA receptor blocker dizocilpine (MK-801) on the poikilocapnic hypoxic ventilatory response (HVR). Male Sprague-Dawley rats were studied before and after acclimatization to hypoxia (70 Torr inspiratory Po(2) for 9 days). We measured ventilation (VI) and the HVR before and after systemic MK-801 treatment (3 mg/kg ip). MK-801 resulted in a constant respiratory frequency (approximately 175 min(-1)) during acute exposure to 10% and 30% O(2) before and after acclimatization. MK-801 had no effect on tidal volume (VT) before acclimatization, but it significantly decreased Vt when the animals were breathing 10% O(2) after acclimatization. The net effect of MK-801 was to eliminate the O(2) sensitivity of Vi before (via changes in respiratory frequency) and after (via changes in VT) acclimatization. Hence, chronic hypoxia altered the effect of MK-801 on the acute HVR, primarily because of increased effects on Vt. This indicates that changes in NMDA receptor-mediated neurotransmission may be involved in ventilatory acclimatization to hypoxia. However, further experiments are necessary to determine the precise location of such plasticity in the central nervous system.  相似文献   

2.
Chronic exposure to intermittent hypoxia (CIH) has been used in animals to mimic the arterial hypoxemia that accompanies sleep apnea. Humans with sleep apnea and animals exposed to CIH have elevated blood pressures and augmented sympathetic nervous system responses to acute exposures to hypoxia. To test the hypothesis that exposure to CIH alters neurons within the nucleus of the solitary tract (NTS) that integrate arterial chemoreceptor afferent inputs, we measured whole cell currents induced by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors in enzymatically dispersed NTS neurons from normoxic (NORM) and CIH-exposed rats (alternating cycles of 3 min at 10% O2 followed by 3 min at 21% O2 between 8 AM and 4 PM for 7 days). To identify NTS neurons receiving carotid body afferent inputs the anterograde tracer 4- (4-(dihexadecylamino)styryl-N-methylpyridinum iodide (DiA) was placed onto the carotid body 1 wk before exposure to CIH. AMPA dose-response curves had similar EC50 but maximal responses increased in neurons isolated from DiA-labeled CIH (20.1 +/- 0.8 microM, n = 9) compared with NORM (6.0 +/- 0.3 microM, n = 8) rats. NMDA dose-response curves also had similar EC50 but maximal responses decreased in CIH (8.4 +/- 0.4 microM, n = 8) compared with NORM (19.4 +/- 0.6 microM, n = 9) rats. These results suggest reciprocal changes in the number and/or conductance characteristics of AMPA and NMDA receptors. Enhanced responses to AMPA receptor activation could contribute to enhanced chemoreflex responses observed in animals exposed to CIH and humans with sleep apnea.  相似文献   

3.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

4.
To examine a role of N-methyl-D-aspartate (NMDA) receptors in the locus coeruleus (LC) in the expression of the withdrawal signs from opioids, rats were continuously infused with morphine (a mu-opioid agonist, 26 nmol/microl per h) or butorphanol (a mu/delta/kappa-mixed opioid agonist, 26 nmol/microl per h) intracerebroventricularly (i.c.v.) through osmotic minipumps for 3 days. An LC injection of NMDA (0.1 and 1 nmol/5 microl) induced withdrawal signs in opioid-dependent animals. However, it did not precipitate any abnormal behaviors in saline-treated control rats. The expression of the withdrawal signs precipitated by NMDA (1 nmol/5 microl), glutamate (10 nmol/5 microl), or naloxone (an opioid antagonist, 24 nmol/5 microl) was completely blocked by pretreatment with a NMDA antagonist, MK-801 (5-methyl-10,11-dihydro-5H-dibenzo[a,d]cycloheptan-5,10-imine), 0.1 mg/kg, i.p. In animals that had been infused with opioids in the same manner, naloxone (48 nmol/5 microl, i.c.v.) precipitated withdrawal signs and increased extracellular glutamate levels in the LC of opioid-dependent rats measured by in vivo microdialysis method. Pretreatment with MK-801, however, did not affect the increases of glutamate levels in the LC. These results further demonstrate that the expression of opioid withdrawal induced by an expeditious release of glutamate in the LC region of opioid-dependent animals might be mainly mediated by the postsynaptic NMDA receptors.  相似文献   

5.
N-Methyl-D-aspartate (NMDA) receptors are susceptible to open-channel block by dizolcipine (MK-801), ketamine and Mg(2+) and are permeable to Ca(2+). It is thought that a tryptophan residue in the second membrane-associated domain (M2) may form part of the binding site for open-channel blockers and contribute to Ca(2+) permeability. We tested this hypothesis using recombinant wild-type and mutant NMDA receptors expressed in HEK-293 cells. The tryptophan was mutated to a leucine (W-5L) in both the NMDAR1 and NMDAR2A subunits. MK-801 and ketamine progressively inhibited currents evoked by glutamate, and the rate of inhibition was increased by the W-5L mutation. An increase in open channel probability accounted for the acceleration. Fluctuation analysis of the glutamate-evoked current revealed that the NMDAR1 W-5L mutation increased channel mean open time, providing further evidence for an alteration in gating. However, the equilibrium affinities of Mg(2+) and ketamine were largely unaffected by the W-5L mutation, and Ca(2+) permeability was not decreased. Therefore, the M2 tryptophan residue of the NMDA channel is not involved in Ca(2+) permeation or the binding of open-channel blockers, but plays an important role in channel gating.  相似文献   

6.
N-Methyl-D-aspartate receptors (NMDARs) are essential mediators of synaptic plasticity under normal physiological conditions. During brain ischemia, these receptors are excessively activated due to glutamate overflow and mediate excitotoxic cell death. Although organotypical hippocampal slice cultures are widely used to study brain ischemia in vitro by induction of oxygen and glucose deprivation (OGD), there is scant data regarding expression and functionality of NMDARs in such slice cultures. Here, we have evaluated the contribution of NMDARs in mediating excitotoxic cell death after exposure to NMDA or OGD in organotypical hippocampal slice cultures after 14 days in vitro (DIV14). We found that all NMDAR subunits were expressed at DIV14. The NMDARs were functional and contributed to cell death, as evidenced by use of the NMDAR antagonist MK-801 (dizocilpine). Excitotoxic cell death induced by NMDA could be fully antagonized by 10 μM MK-801, a dose that offered only partial protection against OGD-induced cell death. Very high concentrations of MK-801 (50–100 μM) were required to counteract cell death at long delays (48–72 h) after OGD. The relative high dose of MK-801 needed for long-term protection after OGD could not be attributed to down-regulation of NMDARs at the gene expression level. Our data indicate that NMDAR signaling is just one of several mechanisms underlying ischemic cell death and that prospective cytoprotective therapies must be directed to multiple targets.  相似文献   

7.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

8.
Obstructive sleep apnoea (OSA) is a risk factor for cardiovascular disorders and in some cases is complication of pulmonary hypertension. We simulated OSA by exposing rats to cyclic intermittent hypoxia (CIH) to investigate its effect on pulmonary vascular endothelial dysfunction. Sprague-Dawley Rats were exposed to CIH (FiO2 9% for 1 min, repeated every 2 min for 8 h/day, 7 days/wk for 3 wk), and the pulmonary arteries of normoxia and CIH treated rats were analyzed for expression of endothelin-1 (ET-1) and ET receptors by histological, immunohistochemical, RT-PCR and Western Blot analyses, as well as for contractility in response to ET-1. In the pulmonary arteries, ET-1 expression was increased, and ET-1 more potently elicited constriction of the pulmonary artery in CIH rats than in normoxic rats. Exposure to CIH induced marked endothelial cell damage associated with a functional decrease of endothelium-dependent vasodilatation in the pulmonary artery. Compared with normoxic rats, ETA receptor expression was increased in smooth muscle cells of the CIH rats, while the expression of ETB receptors was decreased in endothelial cells. These results demonstrated endothelium-dependent vasodilation was impaired and the vasoconstrictor responsiveness increased by CIH. The increased responsiveness to ET-1 induced by intermittent hypoxia in pulmonary arteries of rats was due to increased expression of ETA receptors predominantly, meanwhile, decreased expression of ETB receptors in the endothelium may also participate in it.  相似文献   

9.
N-methyl-D-aspartate(NMDA) glutamate receptors mediate critical components ofcardiorespiratory control in anesthetized animals. The role of NMDAreceptors in the ventilatory responses to peripheral and centralchemoreceptor stimulation was investigated in conscious, freelybehaving rats. Minute ventilation(E)responses to 10% O2, 5%CO2, and increasing intravenousdoses of sodium cyanide were measured in intact rats before and afterintravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume(VT) decreased while frequencyincreased, resulting in a modest reduction inE.Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. TheE responsesto hypercapnia were qualitatively similar in control and MK-801conditions, with slight reductions in respiratory drive (VT/TI)after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT wasunaffected. Sodium cyanide doses associated with significantEincreases were 5 and 50 µg/kg before and after MK-801,respectively. Thus 1-log shift to the right of individual dose-responsecurves occurred with MK-801. Selective carotid body denervation reducedE duringhypoxia by 70%, and residual hypoxic ventilatory responses wereabolished after MK-801. These findings suggest that, in conscious rats,carotid and other peripheral chemoreceptor-mediated hypoxic ventilatoryresponses are critically dependent on NMDA receptor activation and thatNMDA receptor mechanisms are only modestly involved during hypercapnia.

  相似文献   

10.
A possible participation of receptors of the NMDA type in regulation by glutamate of the Lymnaea stagnalis alimentary program was studied in electrophysiological experiments. The specific antagonist of receptors of the N-methyl-D-aspartate (NMDA) type MK-801 has been shown to turn off the endogenous generation of the standard three-phase rhythm or the two-phase rhythm. Stimulation of receptors of this type by their specific agonist, NMDA, on the contrary, increased frequency of the alimentary rhythm and transformed it to the two-phase one. All NMDA effects are eliminated by MK-801. Apart from action on generation of central alimentary rhythms, ligands of receptors of the NMDA type change the tonical level of depolarization and activity of the alimentary circuit motoneurons. MK-801 decreased the initial level of the motoneuron B4 activity and inhibited the excitatory effect both of NMDA and of glutamate itself. There are also obtained data in favor of that earlier reported effect of transformation of the inhibitory response of neurons B4 to glutamate to the excitatory one at action of nitric oxide (NO) donors can be mediated by the specific NO effect on the activity of receptors of the NMDA type. The blocker of NMDA receptors MK-801 has been shown to inhibit the effect of transformation of the response to glutamate. The NO donor nitroprusside enhanced essentially the NMDA excitatory action, while the NO acceptor PTlO decreased it. The results obtained with use of ODQ, the blocker of NO-sensitive guanylyl cyclase (GC), allow thinking that effect of NO on activity of the NMDA receptors of the pond snail alimentary program can be realized through the metabolic pathway GC-cGMP. On the whole, the obtained results show the pond snail receptors of the NMDA type to participate in generation and rearrangements of rhythmical alimentary programs in the tonical excitatory effect on the alimentary program motoneurons in the NO-dependent transformation of the glutamate response.  相似文献   

11.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

12.
Abstract: Subchronic treatment with haloperidol increases the number of asymmetric glutamate synapses associated with a perforated postsynaptic density in the striatum. To characterize these synaptic changes further, the effects of subchronic (28 days) administration of an atypical antipsychotic, clozapine (30 mg/kg, s.c.), or a typical antipsychotic, haloperidol (0.5 mg/kg, s.c.), on the binding of [3H]MK-801 to the NMDA receptor-linked ion channel complex and on the in situ hybridization of riboprobes for NMDAR2A and 2B subunits and splice variants of the NMDAR1 subunit were examined in striatal preparations from rats. The density of striatal glutamate immunogold labeling associated with nerve terminals of all asymmetric synapses and the immunoreactivity of those asymmetric synapses associated with a perforated postsynaptic density were also examined by electron microscopy. Subchronic neuroleptic administration had no effect on [3H]MK-801 binding to striatal membrane preparations. Both drugs increased glutamate immunogold labeling in nerve terminals of all asymmetric synapses, but only haloperidol increased the density of glutamate immunoreactivity within nerve terminals of asymmetric synapses containing a perforated postsynaptic density. Whereas subchronic administration of clozapine, but not haloperidol, resulted in a significant increase in the hybridization of a riboprobe that labels all splice variants of the NMDAR1 subunit, both drugs significantly decreased the abundance of NMDAR1 subunit mRNA containing a 63-base insert. Neither drug altered mRNA for the 2A subunit, but clozapine significantly increased hybridization of a probe for the 2B subunit. The data suggest that some neuroleptic effects may be mediated by glutamatergic systems and that typical and atypical antipsychotics can have varying effects on the density of glutamate in presynaptic terminals and on the expression of specific NMDA receptor splice variant mRNAs. Alternatively, NMDAR1 subunit splice variants may differentially respond to interactions with glutamate.  相似文献   

13.

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea (OSA), is associated with hypertension. The increased of carotid body (CB) sensitivity due to enhanced sympathetic efferent may be mainly responsible for the elevation of blood pressure. Accordingly, we studied this effect of Endothelin-1 (ET-1)-induced CB chemosensory response to CIH, as a vasoactive peptide expressed in CB. The purpose of this study was to investigate the mean arterial blood pressure (MAP) and renal sympathetic nerve activity (RSNA) responses in CIH group by injecting ET-1 to directly stimulate CB chemoreceptor. Furthermore, whether ET receptor-mediated PKC and p38MAPK signaling pathway was involved in CIH-induced CB activation was also studied. Male Sprague–Dawley rats were exposed to CIH (8 h/day for 3 weeks) and the MAP and RSNA were recorded in CIH rats and Sham rats. Our results demonstrated that ET-1-induced MAP and RSNA increase were mainly mediated by ETA receptor activation in CB chemosensory after CIH exposure. Moreover, P38MAPK and PKC signaling pathway might be involved in ET-1-induced increase of MAP and RSNA in CIH group, which provided a potential therapeutic target of OSA.

  相似文献   

14.
Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors.   总被引:1,自引:0,他引:1  
Previous experiments in our laboratory suggested that ammonium toxicity could be mediated by the NMDA type of glutamate receptors. To assess this hypothesis we tested if MK-801, a specific antagonist of the NMDA receptor, is able to prevent ammonium toxicity. Mice and rats were injected i.p. with 12 and 7 mmol/kg of ammonium acetate, respectively. 73% of the mice and 70% of the rats died. However, when the animals were injected i.p. with 2 mg/kg of MK-801, 15 min before ammonium injection, only 5% of the mice and 15% of the rats died. The remarkable protection afforded by MK-801 indicates that ammonia toxicity is mediated by the NMDA receptor.  相似文献   

15.
Blockade of ionotropic glutamate receptors induces neuronal cell apoptosis. We investigated if mitochondria-mediated death signals would contribute to neuronal apoptosis following administration of glutamate antagonists. The administration of MK-801 and CNQX (MK-801/CNQX), the selective antagonists of N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors, produced widespread neuronal death in neonatal rat brain and cortical cell cultures. MK-801/CNQX-induced neuronal apoptosis was prevented by zVAD-fmk, a broad inhibitor of caspases, but insensitive to inhibitors of calpain or cathepsin D. Activation of caspase-3 was observed within 6-12 h and sustained over 36 h after exposure to MK-801/CNQX, which cleaved PHF-1 tau, the substrate for caspase-3. Activation of caspase-3 was blocked by high K+ and mimicked by BAPTA-AM, a selective Ca2+ chelator. Reducing extracellular Ca2+, but not Na+, activated caspase-3, suggesting an essential role of Ca2+ deficiency in MK-801/CNQX-induced activation of caspases. Cortical neurons treated with MK-801/CNQX triggered activation of caspase-9, release of cytochrome c from mitochondria, and translocation of Bax into mitochondria. The present study suggests that blockade of ionotropic glutamate receptors causes caspase-3-mediated neuronal apoptosis due to Ca2+ deficiency that is coupled to the sequential mitochondrial death pathway.  相似文献   

16.
17.
Duan CL  Sun XH  Ji M  Yang H 《生理学报》2005,57(1):71-76
采用微透析和高效液相色谱一电化学(HPLC-ECD)技术研究了谷氨酸和MK-801对正常和帕金森模型人鼠纹状体内多巴胺代谢的影响。用微透析技术在大鼠纹状体内分别定位给以左旋多巴、L-谷氨酸和/或MK-801,同时收集透析液,用HPLC-ECD方法测定透析液中多巴胺代谢产物的浓度。微透析和HPL-ECD分析结果表明:纹状体内定位给以序旋多巴,正常大鼠和帕金森模型大鼠纹状体内多巴胺代谢产物的浓度均升高;纹状体内定位给以L-谷氨酸,可使正常大鼠纹状体内多巴胺代谢产物的浓度降低,但对帕金森火鼠模型纹状体内多巴胺代谢产物浓度的降低不显著;纹状体内定位给以MK-801,正常人鼠纹状体内多巴胺代谢产物的浓度升高:但对帕金森人鼠模型纹状体内多巴胺代谢产物浓度的升高不显著:纹状体内同时定位给以MK-80l和L-谷氨酸,可以有效防止L-谷氨酸所致正常人鼠纹状体内多巴胺代谢产物浓度的降低。结果提示,谷氦酸可以通过NMDA受体调节多巴胺的代谢。尽管非竞争性NMDA拈抗剂MK-801可以有效防止L-谷氨酸所敛正常人鼠纹状体内多巴胺代谢产物浓度的降低,但却不能有效地改善帕金森大鼠模型纹状体内多巴胺的代谢水平。因此存正常及帕金森病情况下,谷氮酸一多巴胺相互作用机制和MK-801改善帕金森病的机制还有待进一步研究。  相似文献   

18.
The neurotoxic actions of polyamines such as spermine have been linked to their modulation of NMDA receptors, resulting in an excitotoxic cell death. Here, we demonstrate that chronic exposure to the polyamine spermine and acute exposure to the combination of spermine and glutamate result in significant toxicity to primary cultures of cerebellar granule neurons (CGNs). However, in both cases this cell death (a) lacks the characteristic cell swelling associated with the necrotic cell death induced by glutamate and (b) is characterized by the widespread formation of apoptotic nuclei. Whereas dizocilpine (MK-801) blocks the synergistic cell death resulting from acute exposure to spermine plus glutamate, neither MK-801 nor the calcium chelator EGTA appreciably attenuates CGN death resulting from chronic exposure to spermine. Consistent with previous reports, glutamate, both acute and chronic, causes CGN death that is characterized by cell swelling, sensitivity to MK-801 and EGTA, and only small numbers of apoptotic nuclei. Spermine-induced toxicity is not blocked by either the protein synthesis inhibitor cycloheximide or the pancaspase inhibitor tert-butoxycarbonyl-Asp-(O-methyl) fluoromethyl ketone. However, the antioxidant butylated hydroxyanisole is an effective blocker of spermine-induced CGN death, suggesting a free-radical component to this cell death. The intact spermine molecule, rather than a catabolic by-product, is required for cell death because the amine oxidase inhibitors N1,N2-bis(2,3-butadienyl)-1,4-butanediamine and aminoguanidine fail to block this toxicity. Thus, in CGNs, spermine-induced toxicity does not occur by its modulation of NMDA receptors, although, under some circumstances, NMDA receptor activation can modulate spermine-induced toxicity.  相似文献   

19.
The modulation of histamine neuron activity by various non-competitive NMDA-receptor antagonists was evaluated by changes in tele-methylhistamine (t-MeHA) levels and histidine decarboxylase (hdc) mRNA expression induced in rodent brain. The NMDA open-channel blockers phencyclidine (PCP) and MK-801 enhanced t-MeHA levels in mouse brain by 50-60%. Ifenprodil, which interacts with polyamine sites of NR2B-containing NMDA receptors, had no effect. PCP also increased hdc mRNA expression in the rat tuberomammillary nucleus. The enhancement of t-MeHA levels elicited by MK-801 (ED50 of approximately 0.1 mg/kg) was observed in the hypothalamus, cerebral cortex, striatum and hippocampus. Control t-MeHA levels and the t-MeHA response to MK-801 were not different in male and female mice. Double immunostaining for HDC and NMDA receptor subunits showed that histamine neurons of the rat tuberomammillary nucleus express NMDA receptor subunit 1 (NR1) with NMDA receptor subunit 2A (NR2A) and NMDA receptor 2B subunit (NR2B). In addition, immunoreactivity for the neuronal glutamate transporter EAAC1 was observed near most histaminergic perikarya. Hence, these findings support the existence of histamine/glutamate functional interactions in the brain. The increase in histamine neuron activity induced by NMDA receptor antagonists further suggests a role of histamine neurons in psychotic disorders. In addition, the decrease in MK-801-induced hyperlocomotion observed in mice after administration of ciproxifan further strengthens the potential interest of H3-receptor antagonist/inverse agonists for the symptomatic treatment of schizophrenia.  相似文献   

20.
Abstract: l -Glutamate, NMDA, dl -α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), and kainate (KA) increased the release of somatostatin-like immunoreactivity (SRIF-LI) from primary cultures of rat hippocampal neurons. In Mg2+-containing medium, the maximal effects (reached at ∼100 µ M ) amounted to 737% (KA), 722% (glutamate), 488% (NMDA), and 374% (AMPA); the apparent affinities were 22 µ M (AMPA), 39 µ M (glutamate), 41 µ M (KA), and 70 µ M (NMDA). The metabotropic receptor agonist trans -1-aminocyclopentane-1,3-dicarboxylate did not affect SRIF-LI release. The release evoked by glutamate (100 µ M ) was abolished by 10 µ M dizocilpine (MK-801) plus 30 µ M 1-aminophenyl-4-methyl-7,8-methylenedioxy-5 H -2,3-benzodiazepine (GYKI 52466). Moreover, the maximal effect of glutamate was mimicked by a mixture of NMDA + AMPA. The release elicited by NMDA was sensitive to MK-801 but insensitive to GYKI 52466. The AMPA- and KA-evoked releases were blocked by 6,7-dinitroquinoxaline-2,3-dione (DNQX) or by GYKI 52466 but were insensitive to MK-801. The release of SRIF-LI elicited by all four agonists was Ca2+ dependent, whereas only the NMDA-evoked release was prevented by tetrodotoxin. Removal of Mg2+ caused increase of basal SRIF-LI release, an effect abolished by MK-801. Thus, glutamate can stimulate somatostatin release through ionotropic NMDA and AMPA/KA receptors. Receptors of the KA type (AMPA insensitive) or metabotropic receptors appear not to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号