共查询到20条相似文献,搜索用时 15 毫秒
1.
Midori Hosobuchi Martha R. Stampfer 《In vitro cellular & developmental biology. Plant》1989,25(8):705-713
Summary Normal human mammary epithelial cells (HMEC) from different individual reduction mammoplasty specimens were all growth inhibited,
and showed a flattened, elongated morphology in response to human recombinant transforming growth factor β1 (TGFβ). The degree
of growth inhibition varied among specimens, but none of the normal HMEC maintained growth in the continued presence of TGFβ.
The degree of growth inhibition also varied with cell age in vitro, cells closer to senescence being more sensitive. TGFβ
sensitivity was additionally assayed in two established cell lines derived from one of the reduction mammoplasty specimens
after exposure to benzo(a)pyrene. Although varying degrees of growth inhibition and morphologic changes were observed in the
cell lines, both lines contained populations that maintained active growth in the presence of TGFβ. Subclones of these lines
demonstrated a great plasticity in their growth response to TGFβ, with individual clones ranging from strongly growth inhibited
to nearly unaffected. These results suggest that multiple factors influence the extent of TGFβ-induced growth effects on both
normal and transformed mammary epithelial cells, and that some of these factors may act through epigenetic mechanisms.
This work was supported by CA24844 from the National Institutes of Health, Bethesda, MD, and the Office of Energy Research,
Office of Health and Environmental Research of the U.S. Department of Energy under contract DE-AC03-76SF00098. 相似文献
2.
3.
4.
5.
6.
7.
Transforming growth factor β (TGF-β) is a very strong pro-fibrotic factor which mediates its action, at least in part, through the expression of connective tissue growth factor (CTGF/CCN2). Along with these cytokines, the involvement of phospholipids in wound healing and the development of fibrosis has been revealed. Among them, lysophosphatidic acid (LPA) is a novel, potent regulator of wound healing and fibrosis that has diverse effects on many types of cells. We decided to evaluate the effect of LPA together with TGF-β on CTGF expression. We found that myoblasts treated with LPA and TGF-β1 produced an additive effect on CTGF expression. In the absence of TGF-β, the induction of CTGF expression by LPA was abolished by a dominant negative form of the TGF-β receptor type II (TGF-βRII) and by the use of SB 431542, a specific inhibitor of the serine/threonine kinase activity of TGF-βRI, suggesting that CTGF induction is dependent on LPA and requires active TGF-βRs. Moreover, we show that LPA requires Smad-2/3 proteins for the induction of CTGF expression, but not their phosphorylation or their nuclear translocation. The requirement of TGF-βRI for LPA mediated-effects is differential, since treatment of myoblasts with LPA in the presence of SB 431542 abolished the induction of stress fibers but not the induction of proliferation. Finally, we demonstrated that CTGF induction in response to LPA requires the activation of JNK, but not ERK, signaling pathways. The JNK requirement is independent of TGF-βRI-mediated activity. These novel results for the mechanism of action of LPA and TGF-β are important for understanding the role of pro-fibrotic growth factors and phospholipids involved in wound healing and related diseases. 相似文献
8.
9.
10.
Sabe H 《Journal of biochemistry》2011,149(6):633-639
Contrary to the long believed hypothesis, it is now evident that breast cancer cells can disseminate from the early phases of the oncogenesis; and that such early disseminated cells sometimes survive at the sites of dissemination and may outgrow after a long latency of years and decades. For cancer cells to leave their origin, they must at least transiently loosen their adhesion with adjacent epithelial cells and stroma, and become motile while avoiding anoikis. Such processes resemble epithelial-mesenchymal transdifferentiation (EMT), which normally takes place in situations such as embryogenesis and wound healing. Interestingly, the occurrence of an EMT-like process in breast cancer cells has been implicated in the generation of cancer stem-like cells, in which TGFβ1 signalling often plays core roles. Here, I discuss the current knowledge regarding cancerous EMT and its signalling pathways with the aim to consider the possible mechanisms of early dissemination, and also the generation of cancer stem-like cells in mammary tumour. 相似文献
11.
Immaculate and complete palatal seam disintegration, which takes place at the last phase of palate development, is essential for normal palate development. And in absence of palatal midline epithelial seam (MES) disintegration, cleft palate may arise. It has been established that transforming growth factor (TGF) β induces both epithelial mesenchymal transition (EMT) and/or apoptosis during MES disintegration. It is likely that MES might cease cell cycle to facilitate cellular changes prior to undergoing transformation or apoptosis, which has never been studied before. This study was designed to explore whether TGFβ, which is crucial for palatal MES disintegration, is capable of inducing cell cycle arrest. We studied the effects of TGFβ1 and TGFβ3, potent negative regulators of the cell cycle, on p15ink4b activity in MES cells. We surprisingly found that TGFβ1, but not TGFβ3, plays a major role in activation of the p15ink4b gene. In contrast, following successful cell cycle arrest by TGFβ1, it is TGFβ3 but not TGFβ1 that causes later cellular morphogenesis, such as EMT and apoptosis. Since TGFβ signaling activates Smads, we analyzed the roles of three Smad binding elements (SBEs) on the p15ink4b mouse promoter by site specific mutagenesis and found that these binding sites are functional. The ChIP assay demonstrated that TGFβ1, not TGFβ3, promotes Smad4 binding to two 5' terminal SBEs but not the 3' terminal site. Thus, TGFβ1 and TGFβ3 play separate yet complimentary roles in achieving cell cycle arrest and EMT/apoptosis and cell cycle arrest is a prerequisite for later cellular changes. 相似文献
12.
Kai Wang Haoran Li Ruipu Sun Chaxian Liu Yunfei Luo Shuhua Fu Ying Ying 《Acta biochimica et biophysica Sinica》2019,(1):1-8
Age-related macular degeneration (AMD) is one of the major causes of irreversible blindness among aging populations in developed countries and can be classified as dry or wet according to its progression.Wet AMD,which is characterized by angiogenesis on the choroidal membrane,is uncommonly seen but more severe.Controlling or completely inhibiting the factors that contribute to the progression of events that lead to angiogenesis may be an effective strategy for treating wet AMD.Emerging evidence has shown that transforming growth factor-β(TGF-β) signaling plays a significant role in the progression of wet AMD.In this review,we described the roles of and changes in TGF-β signaling in the development of AMD and discussed the mechanisms of the TGF-β superfamily in choroidal neovascularization (CNV) and wet AMD,including the modulation of angiogenesis-related factors,inflammation,vascular fibrosis,and immune responses,as well as cross-talk with other signaling pathways.These remarkable findings indicate that TGF-β signaling is a potential target for wet AMD treatment. 相似文献
13.
14.
15.
This study was designed to localize transforming growth factor alpha (TGF-) and epidermal growth factor receptor (EGFR) expression in the developing human gastrointestinal tract and pancreas. Immunohistochemical techniques using specific antibodies against human TGF- and EGFR were performed on digestive tissues of fetuses from 9 to 10 to 24 weeks of gestation, children and adults. In fetuses, TGF- and EGFR proteins were expressed in all epithelial tissues studied with a good correlation and from an age as early as 9 to 10 weeks of gestation, except for TGF- in the esophagus. The strongest TGF- immunostaining was noted in the stomach and the proximal colon. Unexpectedly, immunoreactive gut endocrine cells were observed with the two antibodies used. Relatively numerous in fetuses, they decreased in number with age and were rare in adults particularly along the colon. Enteroglucagon-secreting cells were shown to express TGF- while some gastrin, somatostatin and pancreatic glucagon cells were immunostained with EGFR antibodies. The presence of TGF- and of its recetor in digestive tract epithelium and pancreatic tissues early in fetal life suggests a functional role for TGF- during the developmental process of the digestive system. We demonstrate that TGF- is also produced by endocrine cells and might have an additional mode of action other than paracrine, at least during fetal life. 相似文献
16.
17.
After having established the specificity of the antibodies for the rat testis by western blot analysis, the potential target
cells for transforming growth factors (TGFβs) were identified by immunohistochemical detection of both type I (TβRI) and type
II (TβRII) transducing receptors for TGFβs in the adult rat testis in situ. Leydig cells showed a strong TβRII immunoreactivity
whereas the TβRI staining was weak. Only TβRII was detectable in Sertoli cells. In germ cells, staining for TβRI was stronger
than for TβRII and the expression of both receptors depended on the seminiferous cycle stage. TβRI first appeared in pachytene
spermatocytes and was absent in elongated spermatids from stage XIV onwards. Labelling for TβRII was observed as early as
the spermatogonia stage; it increased in pachytene spermatocytes at the onset of TβRI and disappeared in elongating spermatids
from stage XI onwards. These results show that TGFβs can affect somatic cells functions and suggest that these factors are
involved in the control of meiosis and early spermiogenesis, exerting a direct effect on germ cells.
Accepted: 18 June 1998 相似文献
18.
The repair of dermal tissue is a complex process of interconnected phenomena, where cellular, chemical and mechanical aspects all play a role, both in an autocrine and in a paracrine fashion. Recent experimental results have shown that transforming growth factor -β (TGFβ) and tissue mechanics play roles in regulating cell proliferation, differentiation and the production of extracellular materials. We have developed a 1D mathematical model that considers the interaction between the cellular, chemical and mechanical phenomena, allowing the combination of TGFβ and tissue stress to inform the activation of fibroblasts to myofibroblasts. Additionally, our model incorporates the observed feature of residual stress by considering the changing zero-stress state in the formulation for effective strain. Using this model, we predict that the continued presence of TGFβ in dermal wounds will produce contractures due to the persistence of myofibroblasts; in contrast, early elimination of TGFβ significantly reduces the myofibroblast numbers resulting in an increase in wound size. Similar results were obtained by varying the rate at which fibroblasts differentiate to myofibroblasts and by changing the myofibroblast apoptotic rate. Taken together, the implication is that elevated levels of myofibroblasts is the key factor behind wounds healing with excessive contraction, suggesting that clinical strategies which aim to reduce the myofibroblast density may reduce the appearance of contractures. 相似文献
19.
20.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(1):129463
BackgroundWidely used NAPDH oxidase (Nox) inhibitor, apocynin is a prodrug that needs to be converted to its pharmacologically active form by myeloperoxidase. In myeloperoxidase deficient non phagocytic cells such as vascular smooth muscle cells (VSMCs) apocynin stimulates the production of ROS. ROS is generated by the activation of many signalling pathways, thus we have used apocynin as a pharmacological tool to characterise the role of endogenous ROS in activating the transforming growth factor beta receptor (TGFBR1) without the activation of other pathways.MethodsThe in vitro study utilized human VSMCs. Western blotting and quantitative real time PCR were performed to assess signalling pathways and gene expression, respectively. Intracellular ROS levels was measured using fluorescence detection assay.ResultsTreatment with apocynin of human VSMCs stimulated ROS production and the phosphorylation of TGFBR1 and subsequent activation of TGFBR1 signalling leading to the formation of phosphorylated Smad2 which consequently upregulates the mRNA expression of glycosaminoglycan synthesizing enzyme.ConclusionsThese findings outline a specific involvement of ROS production in TGFBR1 activation. Furthermore, because apocynin stimulates Nox and ROS production, apocynin must be used with considerable care in vitro as its actions clearly extend beyond the stimulation of Nox enzymes and it has consequences for cellular signalling.General significanceApocynin can stimulate Nox leading to the production of ROS and the outcome is completely dependent upon the redox properties of the cell. 相似文献