首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD28 and CTLA-4 are homologous cell surface proteins expressed by T cells. CD28 is constitutively expressed by most T cells, whereas CTLA-4 is expressed by activated T cells. Both proteins are ligands for the costimulatory molecules CD80 and CD86 expressed by activated B cells, macrophages, and dendritic cells. A fusion protein comprising the CTLA-4 extracellular domain joined to a human immunoglobulin heavy chain constant region (CTLA4Ig) binds CD80 and CD-86 with high affinity and inhibits CD80/CD86-dependent immune responses in vitro and in vivo. Attempts at producing the CTLA-4 extracellular domain as an unfused protein have met with limited success. Here we describe the expression and purification of the CTLA-4 extracellular domain as a nonfused protein in Escherichia coli. The 12.5-kDa CTLA-4 extracellular domain was insoluble when expressed in E. coli and required denaturation, reduction, and refolding steps to become soluble and assume its proper conformation. The protein refolded into a mixture of monomers, disulfide-linked dimers, and higher order disulfide-linked aggregates. sCTLA-4 dimers were the predominant refold form when air was used as the oxidizing agent during the refold procedure. Purified sCTLA-4 dimers were 10- to 50-fold more potent than sCTLA-4 monomers at inhibiting T cell activation using a CD80-dependent in vitro bioassay.  相似文献   

2.
A 5'-truncated PDE4A-cDNA corresponding to the amino acid positions 200-886 of the "full-length" sequence (Accession No. L20965) was generated from human leukocyte mRNA by RT-PCR. Several PDE4A constructs containing the catalytic region and differing in their degree of N- and/or C-terminal truncation (amino acid positions 200-886, 200-704, 342-886, and 342-704) were expressed in Escherichia coli to investigate the effect of truncations on purification characteristics, long-term stability, and aggregation. All peptides accumulated as inclusion bodies, necessitating refolding prior to purification by dye and metal chelate affinity chromatography. The constructs differed in long-term stability due to variable levels of protease contamination. The position of the His-tag also influenced the purification results. The best results were obtained with the N- and C-truncated form C-terminally His-tagged, appropriate quantities of which were obtained in pure form and was found to be stable against proteolysis at 4 degrees C for at least 6 weeks. The comparison of the molecular mass of the investigated PDE4A constructs obtained by SDS electrophoresis, size-exclusion chromatography, and analytical ultracentrifugation indicated that C-terminal truncated PDE4A forms dimers whereas PDE4A constructs with a complete C-terminus tend to form larger aggregates.  相似文献   

3.
Pasteurella haemolytica A1 secretes an O-sialoglycoprotein endopeptidase (EC. 3.4.24.57) (glycoprotease: Gcp) which is specific for O-linked sialoglycoproteins. When the cloned gene is expressed in Escherichia coli, the recombinant glycoprotease (rGcp) is secreted to the peripalsm where it is present as a disulfide-linked aggregate which lacks enzymatic activity. In vitro refolding and activation of rGcp by mammalian protein disulfide isomerase (PDI) or by the E. Coli chaperones (DnaK, DnaJ and GrpE) indicate that the redox environment of rGcp is critical in restoring biological activity. A fusion protein, rTrx-Gcp, was constructed to investigate the role of thioredoxin (E. coli TrxA) in the production of enzymatically active rGcp. This 47 kDa protein was expressed at a high level, in a soluble, monomeric form, in the cytoplasm of E. coli. Cleavage of the fusion protein by enterokinase released the rGcp fragment (35 kDa) with glycoprotease activity. A higher recombinant glycoprotease activity was recoveref after anion exchange chromatography of lystates of E. coli expressing rTrx-Gcp. Thus when E. coli TrxA is combined in a recombinant fusion protein with P. haemolytica A1 Gcp, productive folding of the glycoprotease can occur as a result of the chaperone action of the protein disulfide reductase coupled with its ability to retain the fusion gene product in the E. coli cytopalsm.  相似文献   

4.
Human papillomavirus (HPV) type 16 E7-lacZ fusion protein was produced in Escherichia coli, extracted as inclusion bodies, refolded with reducing reagents, and subjected to gel filtration. The refolded protein was purified by ion-exchange column chromatography, resulting in a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. 1H nuclear magnetic resonance spectral changes were observed in the high field methyl region in the presence of Zn2+ ion, suggesting that the refolded form of the fusion protein is possibly renaturated into the putative zinc finger motif (C. Edmond and K. H. Vousden, 1989, J. Virol. 63, 2650-2656) and supporting the data of J. A. Rawls, R. Pusztai, and M. Green (1990, J. Virol. 64, 6121-6129) on zinc binding to E7 protein using radioisotopically labeled zinc ion.  相似文献   

5.
The high-level expression of human interleukin-1 beta in Escherichia coli is described. The protein contributes about 12% of the total cell protein and is associated with the soluble cytoplasmic fraction of the cell. A method for the purification of the protein is given which is based on anion- and cation-exchange chromatographies. The isolated protein, shown to be homogeneous by several analytical methods, has been characterized by amino acid analysis, N- and C-terminal sequence analysis and analytical centrifugation. The protein is biologically active as demonstrated by two different in vitro assays, namely, the mononuclear cell factor (IL-1/MCF) assay and lymphocyte activating factor (IL-1/LAF) assay. The specific activities determined with the IL-1/MCF and IL-1/LAF assays, are 2 X 10(7) and 4 X 10(7) units mg-1, respectively.  相似文献   

6.
We have investigated the refolding and purification of the catalytic domain of human 3',5'-cyclic nucleotide phosphodiesterase 7A1 (PDE7A1) expressed in Escherichia coli. A cDNA encoding an N-terminal-truncated PDE7A1(147-482-His) was amplified by RT-PCR from human peripheral blood cells and inserted into the vector pET21-C for bacterial expression of the enzyme fused to a C-terminal His-tag. The PDE was found to be expressed in the form of inclusion bodies which could be refolded to an active enzyme in buffer containing high concentrations of arginine hydrochloride, ethylene glycol, and magnesium chloride at pH 8.5. The PDE7A1(147-482-His) construct could be purified after dialysis and concentration steps by either Zn2+-IDA-Sepharose chromatography or ResourceQ ion-exchange chromatography to homogeneity. In comparison to the metal-chelate column, the ResourceQ purification resulted in a distinctly better yield and enrichment of the protein. Both the Vmax (0.46 micromol. min(-1). mg(-1) ) and the K(m) (0.1 microM) of the purified enzyme were found to be comparable with published data for native or recombinant catalytically active expressed PDE7A1. Using SDS/PAGE, a molecular mass of 39 kDa was determined (theoretical value 38.783 kDa). As known from several other mammalian PDEs, size-exclusion chromatography using refolded PDE7A1(147-482-His) indicated the formation of dimers. The purified enzyme was soluble at concentrations up to 100 microg/ml. A further increase of protein concentration resulted, however, in precipitation of the enzyme.  相似文献   

7.
Expression of fusion protein trypsin-streptavidin (TRYPSA)4 in Escherichia coli was evaluated and the protein purified. Protein expression was induced by 1 mM isopropylthio--D-galactoside (IPTG), and the enzyme activity was measured by the hydrolysis rate of p-toluenesulfonyl-l-arginine methyl ester (TAME). Expression of the fusion protein in the cell-free extract decreased with increased induction time; correspondingly, that in the inclusion bodies increased. The total expression in Luria–Bertani broth (LB) and Terrific Broth (TB) media reached the highest levels in 2 hr at 30°C. The optimum expression level was 35 and 48 U/L in LB and TB, respectively. Expression of the fusion protein was verified by Western Blot analysis using streptavidin antiserum, and the fusion protein was purified using a benzamidine Sepharose 6B affinity column at room temperature. The molecular size of the soluble purified fusion protein was determined by size-exclusion chromatography using Superose 12 FPLC. A molecular weight of 39–40 kDa was obtained, indicating that the soluble protein exists as a monomer; thus, the presence of the trypsin domain must prevent the streptavidin domain from tetramer formation.  相似文献   

8.
Li M  He S 《Journal of biotechnology》2006,122(3):334-340
Human interleukin (IL)-29 is the latest member of the class II cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-29, little is known of its functions in man. In the present study, an Escherichia coli expression system for the rapid expression of the human IL-29 gene was developed. It involved of cloning IL-29 gene into the pET-44 Ek/LIC vector, which allowed expression of IL-29 with a fusion tag consisting of the NusA protein, polyhistidine and S peptide (Nus-His-S-tag), and introducing a thrombin recognition site between the fusion tag and IL-29. The expressed fusion protein was purified by S-protein agarose affinity chromatography, and the fusion tag was removed from recombinant IL-29 by cleavage with thrombin. The purified IL-29 appeared a single band on SDS-PAGE, and the yield of IL-29 was 60 mg from 1 l of bacterial culture. N-terminal sequencing confirmed the identity of the purified protein. The recombinant IL-29 showed specific antiviral activity that was comparable to the commercially available IFN alfa-2b preparation.  相似文献   

9.
The catalytic and hinge domain (Tyr112-Ile318) of the human membrane type-1 matrix metalloproteinase (MT1-MMP; MMP-14), containing hexa-histidines at the C-terminus (chMT1-MMP), was overexpressed in Escherichia coli. The expressed polypeptide was almost exclusively found in the inclusion body, and then purified by a single Ni2+-NTA agarose column chromatography after solubilization with 6 M urea. During refolding, the 26.9 kDa chMT1-MMP was processed to a 24.3 kDa intermediate form and then to a 22.2 kDa mature form. By Western blot analysis and mass spectrometry combined with N-terminal sequencing, the intermediate form was identified as a mixture of the Tyr112-Thr299 with a translation-initiating methionine and Ile114-Thr299, and that the mature form corresponds to Ile114-Pro290. These results demonstrate that the mature form was generated by successive autoproteolysis of the N- and C-terminal sites between Thr299-Thr300, Ala113-Ile114, and Pro290-Thr291 during refolding. Catalytic activity of the mature chMT1-MMP was demonstrated by a peptide cleavage assay. In addition, it has gelatinolytic activity and is able to activate proMMP-2 to the mature MMP-2. These results indicate that the refolded chMT1-MMP retains characteristics of MT1-MMP.  相似文献   

10.
The regenerating (Reg) family comprises an extensive, diversified group of proteins with homology to C-type lectins. Several members of this family are highly expressed in the gastrointestinal tract under normal conditions, and often show increased expression in inflammatory bowel disease. However, little is known about Reg protein function, and the carbohydrate ligands for these proteins are poorly characterized. We report here the first expression and purification of Reg proteins using a bacterial system. Mouse RegIIIgamma and its human counterpart, HIP/PAP, were expressed in Escherichia coli, resulting in the accumulation of aggregated recombinant protein. Both proteins were renatured by arginine-assisted procedures and were further purified using cation-exchange chromatography. The identities of the purified proteins were confirmed by SDS-PAGE, N-terminal sequencing, and MALDI-TOF mass spectrometry. Size exclusion chromatography revealed that both proteins exist as monomers, and circular dichroism showed that their secondary structures exhibit a predominance of beta-strands which is typical of C-type lectins. Finally, both RegIIIgamma and human HIP/PAP bind to mannan but not to monomeric mannose, giving initial insights into their carbohydrate ligands. These studies thus provide an essential foundation for further analyses of human and mouse RegIII protein function.  相似文献   

11.
The serine protease inhibitor (serpin) protein C inhibitor (PCI; also named plasminogen activator inhibitor-3) regulates serine proteases in hemostasis, fibrinolysis, and reproduction. The biochemical activity of PCI is not fully defined partly due to the lack of a convenient expression system for active rPCI. Using pET-15b plasmid, Ni(2+)-chelate and heparin-Sepharose affinity chromatography steps, we describe here the expression, purification and characterization of wild-type recombinant (wt-rPCI) and two inactive mutants, R354A (P1 residue) and T341R (P14 residue), expressed in Escherichia coli. Wild-type rPCI, but not the two mutants, formed a stable bimolecular complex with thrombin, activated protein C and urokinase. In the absence of heparin, wt-rPCI-thrombin, -activated protein C, and -urokinase inhibition rates were 56.7, 3.4, and 2.3 x 10(4) M(-1) min(-1), respectively, and the inhibition rates were accelerated 25-, 71-, and 265-fold in the presence of 10 mug/mL heparin for each respective inhibition reaction. The stoichiometry of inhibition (SI) for wt-rPCI-thrombin was 2.0, which is comparable to plasma-derived PCI. The present report describes for the first time the expression and characterization of recombinant PCI in a bacterial expression system and demonstrates the feasibility of using this system to obtain adequate amounts of biologically active rPCI for future structure-function studies.  相似文献   

12.
OsNifU1A is a NifU-like rice (Oryza sativa) protein, discovered recently. Its amino acid sequence is very homologous to the sequence of cyanobacterial CnfU and to the sequences of NifU C-terminal domains. Based on its sequence, OsNifU1A is probably a modular structure consisting of two CnfU-like domains, with domain I (formed by residues Leu73 to Gly153) and domain II (formed by residues Leu154 to Ser226). Domain I have a conserved Cys-X-X-Cys motif, which may function as an iron-sulfur cluster assembly scaffold. Domain II lacks a Cys-X-X-Cys motif and therefore, cannot function analogously. Other NifU-like proteins, with sequences homologous to OsNifU1A domain II, have been identified during plant genomic projects; however, the biological roles of these domains remain unknown. We successfully constructed an Escherichia coli expression system for OsNifU1A domain II that enabled us to synthesize and purify milligram quantities of protein for use in structural and functional studies. Using the Gateway system, we built DNA sequences corresponding to two OsNifU1A domain II fusion proteins. One construct has a (His)6 sequence upstream of the OsNifU1A domain II sequence; the other has an upstream thioredoxin-(His)6 sequence. Recombinant OsNifU1A domain II fusion proteins were extracted from E. coli inclusion bodies by dissolving them in 6 M guanidine-HCl. About 36% of the total (His)6/OsNifU1A domain II fusion protein initially present remained soluble after guanidine-HCl was completely removed by step-wise dialysis; whereas, recovery of soluble Trx-(His)6 fusion protein was about 60% of the total cell lysate. About 2 mg of 15N-labeled OsNifU1A domain II was purified for NMR spectral studies. Examination of the OsNifU1A domain II 1H-15N HSQC NMR spectrum indicated that the purified protein was monomeric and correctly folded. Therefore, we established an efficient procedure for synthesis and purification of 15N-labeled OsNifU1A domain II in quantities sufficient for heteronuclear NMR solution structure studies.  相似文献   

13.
Human prorenin was expressed in Escherichia coli as a fusion protein of thioredoxin. The chimeric protein, which accumulated insoluble inclusion bodies, was solubilized in 4 M guanidine-HCl and refolded by an arginine-detergent buffer system and by systematic dialysis. The refolded fusion prorenin was activated by trypsin. The antiserum against human kidney renin specifically inhibited the recombinant human renin activity. Using the recombinant human renin, we screened its inhibitory activity in fermented soybean paste (miso) and demonstrated that miso contained renin inhibitory activity derived from soybean. The IC(50) values for soybean and steamed soybean extracts were determined to be 1.9 and 1.6 mg/ml, respectively. This is the first demonstration of renin inhibitory activity in miso and soybean.  相似文献   

14.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

15.
The gene coding for human interleukin-5 was synthesized and expressed in Escherichia coli under control of a heat-inducible promoter. High-level expression, 10-15% of total cellular protein, was achieved in E. coli. The protein was produced in an insoluble state. A simple extraction, renaturation and purification scheme is described. The recombinant protein was found to be a homodimer, similar to the natural murine-derived protein. Despite the lack of glycosylation, high specific activities were obtained in three 'in vitro' biological assays. Physical characterization of the protein showed it to be mostly alpha-helical, supporting the hypothesis that a conformational similarity exists among certain cytokines.  相似文献   

16.
As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli. sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9 g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with EDs0 about 1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with 13-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.  相似文献   

17.
Expression of plant acyl carrier protein (ACP) in Escherichia coli at levels above that of constitutive E. coli ACP does not appear to substantially alter bacterial growth or fatty acid metabolism. The plant ACP expressed in E. coli contains pantetheine and approximately 50% is present in vivo as acyl-ACP. We have purified and characterized the recombinant spinach ACP-I. NH2-terminal amino acid sequencing indicated identity to authentic spinach ACP-I, and there was no evidence for terminal methionine or formylmethionine. Recombinant ACP-I was found to completely cross-react immunologically with polyclonal antibody raised to spinach ACP-I. Recombinant ACP-I was a poor substrate for E. coli fatty acid synthesis. In contrast, Brassica napus fatty acid synthetase gave similar reaction rates with both recombinant and E. coli ACP. Similarly, malonyl-coenzyme A:acyl carrier protein transacylase isolated from E. coli was only poorly able to utilize the recombinant ACP-I while the same enzyme from B. napus reacted equally well with either E. coli ACP or recombinant ACP-I. E. coli acyl-ACP synthetase showed a higher reaction rate for recombinant ACP-I than for E. coli ACP. Expression of spinach ACP-I in E. coli provides, for the first time, plant ACP in large quantities and should aid in both structural analysis of this protein and in investigations of the many ACP-dependent reactions of plant lipid metabolism.  相似文献   

18.
Recombinant human neu differentiation factor produced in engineered E. coli was isolated and subject to structural characterization. The recombinant molecule can be prepared to apparent purity and is active in stimulating receptor tyrosine autophosphorylation in cultural cells expressing HER2 receptor. The 229 amino-acid polypeptide consists of eight cysteines, of which two cysteines near the N-terminus are disulfide-bonded to form an immunoglobulin-like domain and the remaining six cysteines at the C-terminus cross-link to form an epidermal growth factor-like structure. Detailed chemical characterization of the recombinant molecule by peptide mapping in conjunction with Edman sequencing and mass spectrometry reveals that the bacterially produced recombinant neu differentiation factor preparation is properly folded and contains the correct disulfide structure. The peptide mapping procedure is also useful in identifying abnormal peptides derived from deamidation and oxidation of Asn and Met residues, respectively.  相似文献   

19.
Heterotrimeric G proteins relay signals from G protein-coupled receptors (GPCRs) to the interior of the cell. The signaling cascades induced by G protein activation control a wide range of cellular processes. The α subunit is believed to determine which G protein couples to each GPCR, and is the primary determinant of the type of signal transmitted. Several members of the Gα family have been expressed in active form in Escherichia coli. However, production levels of these proteins are limited: in most cases only 10% of total Gα protein expressed is active; the rest accumulates in inclusion bodies. Although G has been readily expressed in soluble form (to 10 mg/L), other α subunits are minimally soluble, and many are exclusively expressed to inclusion bodies. Previous efforts to solubilize and refold Gα from inclusion bodies have not been successful. Here we did a thorough study of the characteristics of Gα subunits (human Giα(1), human Gsα(short), human G11α and human Gtα(cone)), solubilized and purified from inclusion bodies. We find that we can obtain soluble protein both by on-column and rapid-dilution techniques. Comparison to native, soluble G expressed from E. coli showed that although the refolded Gα subunits were soluble and retained partial α-helicity characteristic of the native, folded Gα subunit, they did not bind GDP or GTP as effectively as native protein. We conclude that the refolded G protein has a native-like secondary structure, but is predominately in a molten globular state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号