首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of 8-hydroxyguanine within calf thymus DNA has been studied after exposure to uv-H2O2 as a hydroxyl free radical generating system. Using high-pressure liquid chromatography with electrochemical detection, we measured the amount of 8-hydroxy-2-deoxyguanosine (8-OHdG) in the enzymatically digested DNA. The 8-OHdG content of uv-exposed DNA increased linearly with increasing H2O2 levels up to 0.03%, above which the rate of increase was less than linear. All hydroxyl free radical scavengers studied (mannitol, ethanol, thiourea, and salicylate), if present in the system when DNA was exposed to uv-H2O2, caused a decrease in the amount of 8-OHdG formed. Thiourea when incubated with damaged DNA caused a loss of 8-OHdG when it was an integral part of DNA. In contrast, thiourea did not react with the nucleoside free in solution. Reduced glutathione did not cause a decrease of 8-OHdG, either when it was an integral part of DNA, or, as the free nucleoside in solution.  相似文献   

2.
Cell killing by ionizing radiation has been shown to be caused by hydroxyl free radicals formed by water radiolysis. We have previously suggested that the killing is not caused by individual OH free radicals but by the interaction of volumes of high radical density with DNA to cause locally multiply damaged sites (LMDS) (J. F. Ward, Radiat. Res. 86, 185-195, 1985). Here we test this hypothesis using hydrogen peroxide as an alternate source of OH radicals. The route to OH production from H2O2 is expected to cause singly damaged sites rather than LMDS. Chinese hamster V79-171 cells were treated with H2O2 at varying concentrations for varying times at 0 degree C. DNA damage produced intracellularly was measured by alkaline elution and quantitated in terms of Gray-equivalent damage by comparing the rate of its elution with that of DNA from gamma-irradiated cells. The yield of DNA damage produced increases with increasing concentration of H2O2 and with time of exposure. H2O2 is efficient in producing single-strand breaks; treatment with 50 microM for 30 min produces damage equivalent to that formed by 10 Gy of gamma irradiation. In the presence of a hydroxyl radical scavenger, dimethyl sulfoxide (DMSO), the yield of damage decreases with increasing DMSO concentration consistent with the scavenging of hydroxyl radicals traveling an average of 15 A prior to reacting with the DNA. In contrast to DNA damage production, cell killing by H2O2 treatment at 0 degree C is inefficient. Concentrations of 5 X 10(-2) M H2O2 for 10 min are required to produce significant cell killing; the DNA damage yield from this treatment can be calculated to be equivalent to 6000 Gy of gamma irradiation. The conclusion drawn is that individual DNA damage sites are ineffectual in killing cells. Mechanisms are suggested for killing at 0 degree C at high concentrations and for the efficient cell killing by H2O2 at 37 degrees C at much lower concentrations.  相似文献   

3.
Methylene blue plus light mediates 8-hydroxyguanine formation in DNA   总被引:14,自引:0,他引:14  
Exposure to methylene blue (MB) plus light mediates formation of large levels of 8-hydroxyguanine in DNA. The amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG) present in DNA increased as the amount of MB concentration increased throughout the 2 to 200 microM range studied and was dependent on light exposure. As the time of light exposure increased so did the 8-OHdG content to levels of about 750 8-OHdG/10(5) deoxyguanosine after 15 min of light exposure when MB was at 20 microM. Even though previous research has demonstrated that hydroxyl free radicals formed from a variety of sources mediate 8-OHdG formation in DNA, inclusion of mannitol, superoxide dismutase, catalase, and desferal in the MB plus light experiments demonstrated that these scavengers of oxygen free radical intermediates or precursors caused either no change or an increase in the 8-OHdG content of DNA exposed to MB plus light. These results appear to rule out the direct role of oxygen free radical intermediates in the primary events involved in the MB plus light mediated formation of 8-OHdG in DNA. Oxygen was essential to cause MB plus light mediated 8-OHdG formation in DNA. It was noted that when the reaction was carried out where the deuterium oxide content had been increased to 100%, the amount of 8-OHdG formed in DNA increased about threefold over that observed when comparable reactions were carried out in pure H2O. Use of the singlet oxygen scavenger 2,5-dimethylfuran has yielded variable results on the MB plus light mediated formation of 8-OHdG in DNA. The data taken collectively clearly indicate that MB plus light mediates 8-OHdG formation in DNA. The D2O data and the requirement for oxygen suggest that singlet oxygen may be an intermediate.  相似文献   

4.
There is increasing evidence supporting a causal role for oxidatively damaged DNA in neurodegeneration during the natural aging process and in neurodegenerative diseases such as Parkinson and Alzheimer. The presence of redox-active catecholamine neurotransmitters coupled with the localization of catalytic copper to DNA suggests a plausible role for these agents in the induction of oxidatively generated DNA damage. In this study we have investigated the role of Cu(II)-catalyzed oxidation of several catecholamine neurotransmitters and related neurotoxins in inducing oxidatively generated DNA damage. Autoxidation of all catechol neurotransmitters and related congeners tested resulted in the formation of nearly a dozen oxidation DNA products resulting in a decomposition pattern that was essentially identical for all agents tested. The presence of Cu(II), and to a lesser extent Fe(III), had no effect on the decomposition pattern but substantially enhanced the DNA product levels by up to 75-fold, with dopamine producing the highest levels of unidentified oxidation DNA products (383±46 adducts/10(6) nucleotides), nearly 3-fold greater than 8-oxo-7,8-dihydro-2'-deoxyguanosine (122±19 adducts/10(6) nucleotides) under the same conditions. The addition of sodium azide, 2,2,6,6-tetramethyl-4-piperidone, tiron, catalase, bathocuproine, or methional to the dopamine/Cu(II) reaction mixture resulted in a substantial decrease (>90%) in oxidation DNA product levels, indicating a role for singlet oxygen, superoxide, H(2)O(2), Cu(I), and Cu(I)OOH in their formation. Whereas the addition of N-tert-butyl-α-phenylnitrone significantly decreased (67%) dopamine-mediated oxidatively damaged DNA, three other hydroxyl radical scavengers, ascorbic acid, sodium benzoate, and mannitol, had little to no effect on these oxidation DNA product levels, suggesting that free hydroxyl radicals may have limited involvement in this dopamine/Cu(II)-mediated oxidatively generated DNA damage. These studies suggest a possible contributory role of oxidatively generated DNA damage by dopamine and related catechol neurotransmitters/neurotoxins in neurodegeneration and cell death. We also found that a naturally occurring broad-spectrum antioxidant, ellagic acid, was substantially effective (nearly 50% inhibition) at low doses (1μM) at preventing this dopamine/Cu(II)-mediated oxidatively generated DNA damage. Because dietary ellagic acid has been found to reduce oxidative stress in rat brains, a neuroprotective role of this polyphenol is plausible.  相似文献   

5.
Cu,Zn-superoxide dismutase (SOD) can catalyze hydroxyl radical generation using H2O2 as a substrate. Lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system was investigated. When linoleic acids micelles or phosphatidylcholine liposomes were incubated with Cu,Zn-SOD and H2O2, lipid peroxidation was gradually increased in a time-dependent manner. The extent of lipid peroxidation was proportional to Cu,Zn-SOD and H2O2 concentrations. Hydroxyl radical scavengers and copper chelator inhibited lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system. These results suggest that lipid peroxidation is mediated by the Cu,Zn-SOD and H2O2 system via the generation of hydroxyl radicals by a combination of the peroxidative reaction of Cu,Zn-SOD and the Fenton-like reaction of free copper released from oxidatively damaged SOD.  相似文献   

6.
Oxidative modification of genetic material has been implicated as a factor in carcinogenesis, particularly during promotion and progression, and therefore there is a need for sensitive detection of oxidized DNA bases. We developed a method that can be applied to DNA isolated from any source and used to simultaneously quantify oxidized nucleosides without a need to prelabel the DNA or use destructive hydrolytic procedures. This method is based on: (a) enzymatic DNA digestion; (b) HPLC separation of the resultant nucleosides; (c) acetylation of the oxidized nucleosides with [3H]Ac2O (acetic anhydride); (d) removal of the radioactive debris; and (e) quantitative analysis of tritiated nucleoside acetates by HPLC. Enzymatic DNA digestion was optimized using DNase I in the presence of Mg2+ (pH 7), followed by nuclease P1 in the presence of Zn2+ (pH 5.1) and alkaline phosphatase (pH 7.5). Analysis of DNA oxidized with H2O2 in the presence of Fe2+/EDTA for 30 min showed that the levels of 8-OHdG (8-hydroxy-2'-deoxyguanosine) were increased 2.7-fold, HMdU (5-hydroxymethyl-2'-deoxyuridine) 3.15-fold, and FdU (5-formyl-2'-deoxyuridine) 2.5-fold. Although the (-)-isomer of cis-dTG (cis-thymidine glycol) was enhanced 2.3 times, the (+)-isomer remained virtually unchanged. Analysis of DNA isolated from epidermal cells of mice treated in vivo with the tumor promoter TPA (12-O-tetradecanoylphorbol 13-acetate) showed 4.8-, 2.7-, and 8.7-fold increases in the levels of total cis-dTG, 8-OHdG, and HMdU, respectively, and of some unknown DNA oxidation products. These results prove applicability of the 3H-postlabeling method to the analysis of DNA (and potentially RNA) isolated from many sources, including animals and humans.  相似文献   

7.
Kim RH  Kwon OJ  Park JW 《Biochimie》2001,83(6):487-495
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA in vitro, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and cysteine as an electron donor. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepentaacetic acid, a spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and catalase. Ceruloplasmin also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Incubation of Cp with Cys-MCO resulted in an increase in the content of carbonyl groups and the significant alteration of the ferroxidase activity, as well as the proteolytic susceptibility. The deoxyribose assay and the salicylate hydroxylation assay showed that hydroxyl free radicals were generated in the reaction of Cp with Cys-MCO. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we interpret the enhancing effect of Cp on DNA damage and mutagenicity induced by Cys-MCO as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged Cp, and H(2)O(2) produced by Cys-MCO. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.  相似文献   

8.
Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.  相似文献   

9.
Efficient refolding process of denatured mature microbial transglutaminase (MTG) without pro-peptide sequence was studied in the model system using urea-denatured pure MTG. Recombinant MTG, produced and purified to homogeneity according to the protocol previously reported, was denatured with 8M urea at neutral pH and rapidly diluted using various buffers. Rapid dilution with neutral pH buffers yielded low protein recovery. Reduction of protein concentration in the refolding solution did not improve protein recovery. Rapid dilution with alkaline buffers also yielded low protein recovery. However, dilution with mildly acidic buffers showed quantitative protein recovery with partial enzymatic activity, indicating that recovered protein was still arrested in the partially refolded state. Therefore, we further investigated the efficient refolding procedures of partially refolded MTG formed in the acidic buffers at low temperature (5 degrees C). Although enzymatic activity remained constant at pH 4, its hydrodynamic properties changed drastically during the 2h after the dilution. Titration of partially refolded MTG to pH 6 after 2h of incubation at pH 4.0 improved the enzymatic activity to a level comparable with that of the native enzyme. The same pH titration with incubation shorter than 2h yielded less enzymatic activity. Refolding trials performed at room temperature led to aggregation, with almost half of the activity yield obtained at 5 degrees C. We conclude that rapid dilution of urea denatured MTG under acidic pH at low temperature results in specific conformations that can then be converted to the native state by titration to physiological pH.  相似文献   

10.
A series of hydroperoxynaphthalimides (1a-1c) and naphthaldiimide (2) that generate hydroxyl radical upon longer wavelength photoirradiation (366 nm) have been devised. They induce DNA strand break at low concentration upon photoirradiation which are inhibited in the presence of hydroxyl radical scavengers such as mannitol or sodium benzoate. The compound 2 showed a sequence specific DNA strand scission at -5'GG-sequence. The formation of 8-hydroxydeoxyguanosine (8-OHdG) is also observed on photoirradiation of 1a or 2 in the presence of dG. The antibacterial activities of these compounds will also be described.  相似文献   

11.
Hydroxyl radicals, generated by reaction of an iron-EDTA complex with H2O2 in the presence of ascorbic acid, attack deoxyribose to form products that, upon heating with thiobarbituric acid at low pH, yield a pink chromogen. Added hydroxyl radical "scavengers" compete with deoxyribose for the hydroxyl radicals produced and diminish chromogen formation. A rate constant for reaction of the scavenger with hydroxyl radical can be deduced from the inhibition of color formation. For a wide range of compounds, rate constants obtained in this way are similar to those determined by pulse radiolysis. It is suggested that the deoxyribose assay is a simple and cheap alternative to pulse radiolysis for determination of rate constants for reaction of most biological molecules with hydroxyl radicals. Rate constants for reactions of ATP, ADP, and Good's buffers with hydroxyl radicals have been determined by this method.  相似文献   

12.
A mixture of ADP, ferrous ions, and hydrogen peroxide (H2O2) generates hydroxyl radicals (OH) that attack the spin trap DMPO (5,5-dimethyl-pyrollidine-N-oxide) to yield the hydroxyl free radical spin-adduct, degrade deoxyribose and benzoate with the release of thiobarbituric acid-reactive material, and hydroxylate benzoate to give fluorescent products. Inhibition studies, with scavengers of the OH radical, suggest that the behavior of iron-ADP in the reaction is complicated by the formation of ternary complexes with certain scavengers and detector molecules. In addition, iron-ADP reacting with H2O2 appears to release a substantial number of OH radicals free into solution. During the generation of OH radicals the ADP molecule was, as expected, damaged by the iron bound to it. Damage to the iron ligand in this way is not normally monitored in reaction systems that use specific detector molecules for OH radical damage. Under certain reaction conditions the ligand may be the major recipient of OH radical damage thereby leading to the incorrect assumption that the iron ligand is a poor Fenton reactant.  相似文献   

13.
This review is based on the honor of receiving the Discovery Award from the Society of Free Radical Biology and Medicine. The review is reflective and presents our thinking that led to experiments that yielded novel observations. Critical questioning of our understanding of oxygen free radicals in biomedical problems led us to use and develop more direct and extremely sensitive methods. This included nitrone free radical spin trapping and HPLC–electrochemical detection. This technology led to the pioneering use of salicylate to trap hydroxyl free radicals and show increased flux in ischemia/reperfused brain regions and also to first sensitively detect 8-hydroxyl-2-deoxyguanosine in oxidatively damaged DNA and help assess its role in cancer development. We demonstrated that methylene blue (MB) photoinduces formation of 8-hydroxyguanine in DNA and RNA and discovered that MB sensitively photoinactivates RNA viruses, including HIV and the West Nile virus. Studies in experimental stroke led us serendipitously to discover that α-phenyl-tert-butylnitrone (PBN) was neuroprotective if given after the stroke. This led to extensive commercial development of NXY-059, a PBN derivative, for the treatment of stroke. More recently we discovered that PBN nitrones have potent anti-cancer activity and are active in preventing hearing loss caused by acute acoustical trauma.  相似文献   

14.
Singlet molecular oxygen (1O2) was generated in aqueous solution (H2O or D2O) at 37 degrees C by the thermal dissociation of the endoperoxide of 3,3'-(1,4-naphthylidene) dipropionate (NDPO2). Guanosine and deoxyguanosine quench 1O2 with overall quenching rate constants of 6.2 X 10(6) M-1 s-1 and 5.2 X 10(6) M-1 s-1, respectively. Reaction with 1O2 results in the formation of 8-hydroxyguanosine (8-OH-Guo) and 8-hydroxydeoxyguanosine (8-OH-dGuo), respectively, with a yield of 1.5% at 1 mM substrate with an NDPO2 concentration of 40 mM; a corresponding 8-hydroxy derivative is not formed from deoxyadenosine. In D2O the yield of 8-OH-Guo is 1.5-fold that in H2O. Sodium azide suppresses 8-OH-Guo and 8-OH-dGuo production. In contrast, the hydroxyl radical scavengers, tert-butanol, 2-propanol, or sodium formate, do not decrease the production of the 8-OH derivatives. The formation of 8-OH derivatives is significantly increased (2-5-fold) by thiols such as dithiothreitol, glutathione, cysteine, and cysteamine. With use of a plasmid containing a fragment of the mouse metallothionein I promoter (pMTP3') and a novel end-labeling technique, the position of 1O2-induced single-strand breaks in DNA was examined. Strand breaks occur selectively at dGuo; no major differences (hot spots) were observed between individual guanines.  相似文献   

15.
Electron spin resonance (ESR) and high-performance liquid chromatography (HPLC) techniques were utilized to investigate the effect of deferoxamine on free radical generation in the reaction of Cr(V) with H2O2 and organic hydroperoxides. ESR measurements demonstrated that deferoxamine can efficiently reduce the concentration of the Cr(V) intermediate as formed in the reduction of Cr(VI) by NAD(P)H or a flavoenzyme glutathione reductase/NADH. ESR spin trapping studies showed that deferoxamine also inhibits Cr(V)-mediated .OH radical generation from H2O2, as well as Cr(V)-mediated alkyl and alkoxy radical formation from t-butyl hydroperoxide and cumene hydroperoxide. HPLC measurements showed that .OH radicals generated by the Cr(VI)/flavoenzyme/NAD(P)H enzymatic system react with 2'-deoxyguanine to form 8-hydroxy-2'-deoxyguanine (8-OHdG), a DNA damage marker. Deferoxamine effectly inhibited the formation of 8-OHdG also.  相似文献   

16.
The disaccharide trehalose, which accumulates dramatically during heat shock and stationary phase in many organisms, enhances thermotolerance and reduces aggregation of denatured proteins. Here we report a new role for trehalose in protecting cells against oxygen radicals. Exposure of Saccharomyces cerevisiae to a mild heat shock (38 degrees C) or to a proteasome inhibitor (MG132) induced trehalose accumulation and markedly increased the viability of the cells upon exposure to a free radical-generating system (H(2)O(2)/iron). When cells were returned to normal growth temperature (28 degrees C) or MG132 was removed from the medium, the trehalose content and resistance to oxygen radicals decreased rapidly. Furthermore, a mutant unable to synthesize trehalose was much more sensitive to killing by oxygen radicals than wild-type cells. Providing trehalose exogenously enhanced the resistance of mutant cells to H(2)O(2). Exposure of cells to H(2)O(2) caused oxidative damage to amino acids in cellular proteins, and trehalose accumulation was found to reduce such damage. After even brief exposure to H(2)O(2), the trehalose-deficient mutant exhibited a much higher content of oxidatively damaged proteins than wild-type cells. Trehalose accumulation decreased the initial appearance of damaged proteins, presumably by acting as a free radical scavenger. Therefore, trehalose accumulation in stressed cells plays a major role in protecting cellular constituents from oxidative damage.  相似文献   

17.
1. At neutral pH ferricytochrome c is reduced by the superoxide anion radical (O2-), without loss of enzymatic activity, by a second order process in which no intermediates are observed. The yield of ferrocytochrome c (82-104%), as related to the amount of O2- produced, is slightly dependent on the concentration of sodium formate in the matrix solution. 2. The reaction (k1 equals (1.1+/-0.1) - 10(6) M-1 - s-1 at pH 7.2, I equals 4 mM and 21 degrees C) can be inhibited by superoxide dismutase and trace amounts of copper ions. The inhibition by copper ions is removed by EDTA without interference in the O2- reduction reaction. 3. The second-order rate constant for the reaction of O2- with ferricytochrome c depends on the pH of the matrix solution, decreasing rapidly at pH greater than 8. The dependence of the rate constant on the pH can be explained by assuming that only the neutral form of ferricytochrome c reacts with O2- and that the alkaline form of the hemoprotein is unreactive. From studies at pH 8.9, the rate for the transition from the alkaline to the neutral form of ferricytochrome c can be estimated to be 0.3 s-1 (at 21 degrees C and I equals 4 mM). 4. The second-order rate constant for the reaction of O2- with ferricytochrome c is also dependent on the ionic strength of the medium. From a plot of log k1 versus I1/2-(I + alphaI1/2)-1 we determined the effective charge on the ferricytochrome c molecule as +6.3 and the rate constant at I equals 0 as (3.1+/-0.1) - 10(6) M-1 - s-1 (pH 7.1, 21 degrees C). 5. The possibility that singlet oxygen is formed as a product of the reaction of O2- with ferricytochrome c can be ruled out on thermodynamic grounds.  相似文献   

18.
19.
In the present study, the effect of melatonin on oxidative DNA damage induced by kainic acid (KA) treatment was investigated. 8-hydroxy-deoxyguanosine (8-OH-dG) is a main product of oxidatively damaged DNA and was used as the endpoint in these studies. The levels of 8-OH-dG were found to be elevated in the hippocampus and frontal cortex of rats treated with KA. These elevated levels were significantly reduced in animals that were co-treated with melatonin. Thus, there was no difference in 8-OH-dG levels in the brain of control rats compared to those treated with KA (10 mg/kg) plus melatonin (10 mg/kg). The levels of 8-OH-dG also increased in the liver of rats treated with KA. This rise in oxidatively damaged DNA was also prevented by melatonin administration. Melatonin's ability to reduce KA-induced increases in neural and hepatic 8-OH-dG levels presumably relates to its direct free radical scavenging ability and possibly to other antioxidative actions of melatonin.  相似文献   

20.
An association between exposure to ambient particulate matter (PM) and increased incidence of mortality and morbidity due to lung cancer and cardiovascular diseases has been demonstrated by recent epidemiological studies. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by PM, have been suggested by many studies as an important factor in the oxidative damage of DNA by PM. The purpose of this study was to characterize quantitatively hydroxyl radical generation by various transition metals in the presence of H2O2 in aqueous buffer solution (pH 7.4) and hydroxylation of 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG) under similar conditions. The order of metals' redox reactivity and hydroxyl radical production was Fe(II), V(IV), Cu(I), Cr(III), Ni(II), Co(II), Pb(II), Cd(II). Then, we investigated the generation of hydroxyl radicals in the presence of H2O2 by various airborne PM samples, such as total suspended particulate (TSP), PM10, PM2.5 (PM with aerodynamic diameter 10 and 2.5 μm), diesel exhaust particles (DEP), gasoline exhaust particles (GEP) and woodsmoke soot under the same conditions. When suspensions of PMs were incubated with H2O2 and dG at pH 7.4, all particles induced hydroxylation of dG and formation of 8-OHdG in a dose-dependent increase. Our findings demonstrated that PM's hydroxyl radical (HO√) generating ability and subsequent dG hydroxylation is associated with the concentration of water-soluble metals, especially Fe and V and other redox or ionizable transition metals and not their total metal content, or insoluble metal oxides, via a Fenton-driven reaction of H2O2 with metals. Additionally, we observed, by Electron paramagnetic resonance (EPR), that PM suspensions in the presence of H2O2 generated radical species with dG, which were spin-trapped by 2-methyl-2-nitroso-propane (MNP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号