首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Insulin induces and dietary n-3 PUFAs suppress hepatic de novo lipogenesis by controlling sterol-regulatory element binding protein-1 nuclear abundance (nSREBP-1). Our goal was to define the mechanisms involved in this regulatory process. Insulin treatment of rat primary hepatocytes rapidly augments nSREBP-1 and mRNA(SREBP-1c) while suppressing mRNA(Insig-2) but not mRNA(Insig-1). These events are preceded by rapid but transient increases in Akt and Erk phosphorylation. Removal of insulin from hepatocytes leads to a rapid decline in nSREBP-1 [half-time (T1/2) approximately 10 h] that is abrogated by inhibitors of 26S proteasomal degradation. 22:6,n-3, the major n-3 PUFA accumulating in livers of fish oil-fed rats, suppresses hepatocyte levels of nSREBP-1, mRNA(SREBP-1c), and mRNA(Insig-2) but modestly and transiently induces mRNA(Insig-1). More importantly, 22:6,n-3 accelerates the disappearance of hepatocyte nSREBP-1 (T1/2 approximately 4 h) through a 26S proteasome-dependent process. 22:6,n-3 has minimal effects on microsomal SREBP-1 and sterol-regulatory element binding protein cleavage-activating protein or nuclear SREBP-2. 22:6,n-3 transiently inhibits insulin-induced Akt phosphorylation but induces Erk phosphorylation. Inhibitors of Erk phosphorylation, but not overexpressed constitutively active Akt, rapidly attenuate 22:6,n-3 suppression of nSREBP-1. Thus, 22:6,n-3 suppresses hepatocyte nSREBP-1 through 26S proteasome- and Erk-dependent pathways. These studies reveal a novel mechanism for n-3 PUFA regulation of hepatocyte nSREBP-1 and lipid metabolism.  相似文献   

3.
4.
5.
6.
7.
Patients with non-alcoholic fatty liver disease are characterised by a decreased n-3/n-6 polyunsaturated fatty acid (PUFA) ratio in hepatic phospholipids. The metabolic consequences of n-3 PUFA depletion in the liver are poorly understood. We have reproduced a drastic drop in n-3 PUFA among hepatic phospholipids by feeding C57Bl/6J mice for 3 months with an n-3 PUFA depleted diet (DEF) versus a control diet (CT), which only differed in the PUFA content. DEF mice exhibited hepatic insulin resistance (assessed by euglycemic-hyperinsulinemic clamp) and steatosis that was associated with a decrease in fatty acid oxidation and occurred despite a higher capacity for triglyceride secretion. Microarray and qPCR analysis of the liver tissue revealed higher expression of all the enzymes involved in lipogenesis in DEF mice compared to CT mice, as well as increased expression and activation of sterol regulatory element binding protein-1c (SREBP-1c). Our data suggest that the activation of the liver X receptor pathway is involved in the overexpression of SREBP-1c, and this phenomenon cannot be attributed to insulin or to endoplasmic reticulum stress responses. In conclusion, n-3 PUFA depletion in liver phospholipids leads to activation of SREBP-1c and lipogenesis, which contributes to hepatic steatosis.  相似文献   

8.
9.
10.
Eicosapentaenoic acid (EPA) is a member of the family of n-3 polyunsaturated fatty acids (PUFAs) that are clinically used to treat hypertriglyceridemia. The triglyceride (TG) lowering effect is likely due to an alteration in lipid metabolism in the liver, but details have not been fully elucidated. To assess the effects of EPA on hepatic TG metabolism, mice were fed a high-fat and high-sucrose diet (HFHSD) for 2 weeks and were given highly purified EPA ethyl ester (EPA-E) daily by gavage. The HFHSD diet increased the hepatic TG content and the composition of monounsaturated fatty acids (MUFAs). EPA significantly suppressed the hepatic TG content that was increased by the HFHSD diet. EPA also altered the composition of fatty acids by lowering the MUFAs C16:1 and C18:1 and increasing n-3 PUFAs, including EPA and docosahexaenoic acid (DHA). Linear regression analysis revealed that hepatic TG content was significantly correlated with the ratios of C16:1/C16:0, C18:1/C18:0, and MUFA/n-3 PUFA, but was not correlated with the n-6/n-3 PUFA ratio. EPA also decreased the hepatic mRNA expression and nuclear protein level of sterol regulatory element binding protein-1c (SREBP-1c). This was reflected in the levels of lipogenic genes, such as acetyl-CoA carboxylase α (ACCα), fatty acid synthase, stearoyl-CoA desaturase 1 (SCD1), and glycerol-3-phosphate acyltransferase (GPAT), which are regulated by SREBP-1c. In conclusion, oral administration of EPA-E ameliorates hepatic fat accumulation by suppressing TG synthesis enzymes regulated by SREBP-1 and decreases hepatic MUFAs accumulation by SCD1.  相似文献   

11.
12.
13.
14.
Obesity is a growing problem that threatens the health and welfare of a large proportion of the human population. The n-3 polyunsaturated fatty acids (PUFA) are dietary factors that have potential to facilitate reduction in body fat deposition and improve obesity-induced metabolic syndromes. The n-3 PUFA up-regulate several inflammation molecules including serum amyloid A (SAA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in hepatocytes and adipocytes. Actions of these inflammation mediators resemble those of n-3 PUFA in the modulation of many lipid metabolism-related genes. For instance, they both suppress expressions of perilipin, sterol regulatory element binding protein-1 (SREBP-1) and lipoprotein lipase (LPL) to induce lipolysis and reduce lipogenesis. This review will connect these direct or indirect regulating pathways between n-3 PUFA, inflammation mediators, lipid metabolism-related genes and body fat reduction. A thorough knowledge of these regulatory mechanisms will lead us to better utilization of n-3 PUFA to reduce lipid deposition in the liver and other tissues, therefore presenting an opportunity for developing new strategies to treat obesity.  相似文献   

15.
16.
Dietary n? 3 polyunsaturated fatty acids (PUFA) suppress the secretion of very low density lipoprotein (VLDL) directly when delivered to the liver in chylomicron remnants (CMR). The role of sterol regulatory element-binding proteins (SREBPs) and hepatic nuclear factor-4α (HNF-4α) in the regulation of this effect was investigated. Chylomicron remnant-like particles (CRLPs) containing triacylglycerol (TG) from palm (rich in saturated fatty acids (SFA)) or fish (rich in n? 3 PUFA) oil were incubated with cultured rat hepatocytes (24 h) and the expression of protein and mRNA for SREBP-1, SREBP-2 and HNF-4α, and levels of mRNA for their target genes were determined. SREBP-1 and -2 protein expression in the membrane and nuclear fractions was unaffected by either type of CRLPs. mRNA abundance for SREBP-1c and -2 was also unchanged by CRLP-treatment, as were levels of mRNA for target genes of SREBP-1, including steroyl CoA desaturase, acetyl CoA carboxylase, fatty acid synthase and ATP citrate lyase, and SREBP-2 (3-hydroxy-3-methylglutaryl CoA reductase). In contrast, HNF-4α protein and mRNA levels were significantly decreased by CRLPs enriched in n? 3 PUFA, but not SFA, and the expression of mRNA for HNF-4α target genes, including HNF-1α, apolipoprotein B and the microsomal TG transfer protein, was also lowered by n? 3 PUFA-, but not SFA-enriched CRLPs. These findings suggest that the direct suppression of VLDL secretion by dietary n? 3 PUFA delivered to the liver in CMR is mediated via decreased expression of HNF-4α.  相似文献   

17.
The influence of chylomicron remnants enriched in n-3 or n-6 polyunsaturated fatty acids (PUFA) (derived from fish or corn oil, respectively) on the expression of mRNA for four genes involved in the regulation of the synthesis, assembly, and secretion of very-low-density lipoprotein (VLDL) in the liver was investigated in normal rat hepatocytes and after manipulation of the cellular oxidative state by incubation with N-acetyl cysteine (NAC) or CuSO(4). The four genes investigated were those encoding apolipoprotein B (apoB), the microsomal triacylglycerol transfer protein (MTP), and the enzymes acyl coenzyme A:diacylglycerol acyltransferase (DGAT) and acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2), which play a role in the regulation of triacylglycerol and cholesteryl ester synthesis, respectively. mRNA levels for apoB, MTP, and DGAT were unaffected by either fish or corn oil chylomicron remnants, but the amount of ACAT2 mRNA was significantly reduced after incubation of the hepatocytes with fish oil remnants as compared with corn oil remnants or without remnants. These findings indicate that the delivery of dietary n-3 PUFA to hepatocytes in chylomicron remnants downregulates the expression of mRNA for ACAT2, and this may play a role in their inhibition of VLDL secretion. However, when the cells were shifted into a pro-oxidizing or pro-reducing state by pretreatment with CuSO(4) (1 mM) or NAC (5 mM) for 24 hr, levels of mRNA for MTP were increased by about 2- or 4-fold, respectively, by fish oil remnants, whereas corn oil remnants had no significant effect. Fish oil remnants also caused a smaller increase in apoB mRNA in comparison with corn oil remnants in NAC-treated cells (+38%). These changes would be expected to lead to increased VLDL secretion rather than the decrease associated with dietary n-3 PUFA in normal conditions. These findings suggest that relatively minor changes in cellular redox levels can have a major influence on important liver functions such as VLDL synthesis and secretion.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号