首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced "switching on" of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages.  相似文献   

2.
The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli activates members of the Rho family by deamidation of glutamine 61/63. Because this amino acid is crucial for GTP hydrolysis, deamidation of glutamine 61/63 results in constitutively active Rho proteins. Recently, it was shown that the level of CNF1-activated Rac is rapidly diminished in CNF1-treated cells by proteolytic degradation. Here, we studied the requirements for CNF1-induced Rac degradation. By overexpressing His-tagged activated Rac mutants we show that constitutive activation is necessary for degradation of Rac. However, permanent activation is not sufficient for degradation, because Rac that is constitutively activated by transamidation at glutamine 61 by the Bordetella dermonecrotic toxin is not degraded. Overexpression of His-tagged Rac mutants deficient in interaction with GTPase-activating protein (Rac(N92D) and Rac(Y64H)) and guanosine nucleotide dissociation inhibitor (Rac(H103E)) were degraded after activation by CNF1, whereas Rac(Y40C), which is not able to interact with CRIB domain effectors or plenty of SH3, was not degraded. Isoprenylation and the presence of a putative mitotic destruction box are essential for CNF-induced degradation. In contrast to Rac1, Rac2, and Rac3 were not degraded following constitutive activation by CNF1. Using site-directed mutagenesis, we defined the polybasic region and amino acids 90, 107, 147, and 151 as responsible for isotype-specific degradation.  相似文献   

3.
CNF1 toxin is a virulence factor produced by uropathogenic Escherichia coli. Upon cell binding and introduction into the cytosol, CNF1 deamidates glutamine 63 of RhoA (or 61 of Rac and Cdc42), rendering constitutively active these GTPases. Unexpectedly, we measured in bladder cells a transient CNF1-induced activation of Rho GTPases, maximal for Rac. Deactivation of Rac correlated with the increased susceptibility of its deamidated form to ubiquitin/proteasome-mediated degradation. Sensitivity to ubiquitylation could be generalized to other permanent-activated forms of Rac and to its sustained activation by Dbl. Degradation of the toxin-activated Rac allowed both host cell motility and efficient cell invasion by uropathogenic bacteria. CNF1 toxicity thus results from a restricted activation of Rho GTPases through hijacking the host cell proteasomal machinery.  相似文献   

4.
Regulated intestinal epithelial cell migration plays a key role in wound healing and maintenance of a healthy gastrointestinal tract. Epidermal growth factor (EGF) stimulates cell migration and wound closure in intestinal epithelial cells through incompletely understood mechanisms. In this study we investigated the role of the small GTPase Rac in EGF-induced cell migration using an in vitro wound-healing assay. In mouse colonic epithelial (MCE) cell lines, EGF-stimulated wound closure was accompanied by a doubling of the number of cells containing lamellipodial extensions at the wound margin, increased Rac membrane translocation in cells at the wound margin, and rapid Rac activation. Either Rac1 small interfering (si)RNA or a Rac1 inhibitor completely blocked EGF-stimulated wound closure. Whereas EGF failed to activate Rac in colon cells from EGF receptor (EGFR) knockout mice, stable expression of wild-type EGFR restored EGF-stimulated Rac activation and migration. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or Src family kinases reduced EGF-stimulated Rac activation. Cotreatment of cells with both inhibitors completely blocked EGF-stimulated Rac activation and localization to the leading edge of cells and lamellipodial extension. Our results present a novel mechanism by which the PI3K and Src signaling cascades cooperate to activate Rac and promote intestinal epithelial cell migration downstream of EGFR.  相似文献   

5.
Apoptosis plays a key role in the maintenance of a constant cell number and a low incidence of cancer in the mucosa of the intestine. Although the small GTPase Rac1 has been established as an important regulator of migration of intestinal epithelial cells, whether Rac1 is also involved in apoptosis is unclear. The present study tested the hypothesis that Rac1 mediates TNF-alpha-induced apoptosis in IEC-6 cells. Rac1 is activated during TNF-alpha-induced apoptosis as judged by the level of GTP-Rac1, the level of microsomal membrane-associated Rac1, and lamellipodia formation. Although expression of constitutively active Rac1 does not increase apoptosis in the basal condition, inhibition of Rac1 either by NSC-23766 (Rac1 inhibitor) or expression of dominant negative Rac1 protects cells from TNF-alpha-induced apoptosis by inhibiting caspase-3, -8, and -9 activities. Inhibition of Rac1 before the administration of apoptotic stimuli significantly prevents TNF-alpha-induced activation of JNK1/2, the key proapoptotic regulator in IEC-6 cells. Inhibition of Rac1 does not modulate TNF-alpha-induced ERK1/2 and Akt activation. Inhibition of ERK1/2 and Akt activity by U-0126 and LY-294002, respectively, increased TNF-alpha-induced apoptosis. However, inhibition of Rac1 significantly decreased apoptosis in the presence of ERK1/2 and Akt inhibitors, similar to the effect observed with NSC-23766 alone in response to TNF-alpha. Thus, Rac1 inhibition protects cells independently of ERK1/2 and Akt activation during TNF-alpha-induced apoptosis. Although p38 MAPK is activated in response to TNF-alpha, inhibition of p38 MAPK did not decrease apoptosis. Rac1 inhibition did not alter p38 MAPK activity. Thus, these results indicate that Rac1 mediates apoptosis via JNK and plays a key role in proapoptotic pathways in intestinal epithelial cells.  相似文献   

6.
Previous work has established that the integrin signal transduction pathway plays an important role in the regulation of epithelial tubule formation. Furthermore, it has been demonstrated that Rho-kinase, an effector of the Rho signaling pathway, is an important downstream modulator of collagen-mediated renal and mammary epithelial tubule morphogenesis. In the present study, MDCK cells that expressed mutant dominant-negative, constitutively active Rho family GTPases were used to provide further insight into Rho-GTPase signaling and the regulation of epithelial tubule formation. Using collagen gel overlays on MDCK cells as a model system, we observed phosphorylated myosin light chain (pMLC) at the leading edge of migrating lamellipodia. This epithelial remodeling led to the formation of multicellular branching epithelial tubular structures with extensive tight junctions. However, in cells expressing dominant-negative RhoN19, MLC phosphorylation, epithelial remodeling, and tubule formation were inhibited. Instead, only small apical lumens with a solitary tight junctional ring were observed, providing further evidence that Rho signaling through Rho-kinase is important in the regulation of epithelial tubule formation. Because the present model for the Rho signaling pathway proposes that Rac plays a prominent but reciprocal role in cell regulation, experiments were conducted using cells that expressed constitutively active RacV12. When incubated with collagen gels, RacV12-expressing cells formed small apical lumens with simple tight junctions, suggesting that Rac1 signaling also has a prominent role in the regulation of epithelial morphogenesis. Complementary collagen gel overlay experiments with wild-type MDCK cells demonstrated that endogenous Rac1 activation levels decreased over a time course consistent with lamellipodia and tubule formation. Under these conditions, Rac1 was initially localized to the basolateral membrane. However, after epithelial remodeling, activated Rac1 was observed primarily in lamellipodia. These studies support a model in which Rac1 and RhoA are important modulators of epithelial tubule formation. Rac signaling; Rho signaling; tight junction; adherens junction  相似文献   

7.
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).  相似文献   

8.
The CNF1 toxin is produced by uropathogenic and meningitis-causing Escherichia coli. CNF1 penetrates autonomously into cells and confers phagocytic properties to epithelial and endothelial cells. CNF1 acts at the molecular level by constitutively activating Rho GTPases attenuated by their cellular ubiquitin-mediated proteasomal degradation. Here we report the relationship between the ubiquitin-mediated proteasomal degradation of activated Rho and the endothelial cell response to the toxin. The type of cellular response to CNF1 intoxication, first screened by DNA microarray analysis, revealed the launching of a program oriented toward an inflammatory response. Parallel to Rho protein activation by CNF1, we also established the kinetics of production of monocyte chemotactic protein-1 (MCP-1), interleukin-8 (IL-8), IL-6, monocyte inflammatory protein-3alpha (MIP-3alpha) and E-selectin. Both the mutation of the catalytic domain of the toxin (CNF1-C866S) and the inhibition of Rho proteins abrogate the CNF1-induced production of the immunomodulators MIP-3alpha, MCP-1, and IL-8. These immunomodulators are also produced upon activation of Cdc42 and Rac preferentially. Our results indicate that, in addition to pathogen molecular pattern recognition by host-receptors, a direct activation of Rho proteins by the CNF1 virulence factor efficiently triggers a cellular reaction of host alert. Consistently, we assume that the CNF1-induced ubiquitin-mediated proteasomal degradation of activated Rho proteins may limit the amplitude of the host cell immune responses.  相似文献   

9.
The current knowledge assigns a crucial role to the Rho GTPases family (Rho, Rac, Cdc42) in the complex transductive pathway leading to skeletal muscle cell differentiation. Their exact function in myogenesis, however, remains largely undefined. The protein toxin CNF1 was herein employed as a tool to activate Rho, Rac and Cdc42 in the myogenic cell line C2C12. We demonstrated that CNF1 impaired myogenesis by affecting the muscle regulatory factors MyoD and myogenin and the structural protein MHC expressions. This was principally driven by Rac/Cdc42 activation whereas Rho apparently controlled only the fusion process. More importantly, we proved that a controlled balance between Rho and Rac/Cdc42 activation/deactivation state was crucial for the correct execution of the differentiation program, thus providing a novel view for the role of Rho GTPases in muscle cell differentiation. Also, the use of Rho hijacking toxins can represent a new strategy to pharmacologically influence the differentiative process.  相似文献   

10.
Cytotoxic necrotizing factor 1 (CNF1) is a bacterial toxin known to activate Rho GTPases and induce host cell cytoskeleton rearrangements. The constitutive activation of Rho GTPases by CNF1 is shown to enhance bacterial uptake in epithelial cells and human brain microvascular endothelial cells. However, it is unknown how exogenous CNF1 exhibits such phenotypes in eukaryotic cells. Here, we identified 37-kDa laminin receptor precursor (LRP) as the receptor for CNF1 from screening the cDNA library of human brain microvascular endothelial cells by the yeast two-hybrid system using the N-terminal domain of CNF1 as bait. CNF1-mediated RhoA activation and bacterial uptake were inhibited by exogenous LRP or LRP antisense oligodeoxynucleotides, whereas they were increased in LRP-overexpressing cells. These findings indicate that the CNF1 interaction with LRP is the initial step required for CNF1-mediated RhoA activation and bacterial uptake in eukaryotic cells.  相似文献   

11.
The airway epithelial barrier provides defenses against inhaled antigens and pathogens, and alterations of epithelial barrier function have been proposed to play a significant role in the pathogenesis of chronic airway diseases. Although the epidermal growth factor receptor (EGFR) plays roles in various physiological and pathological processes on the airway epithelium, the role of EGFR on barrier function in the airway remains largely unknown. In the present study, we assessed the effects of EGFR activation on paracellular permeability in airway epithelial cells (AECs). EGFR activation induced by the addition of EGF increased transepithelial electrical resistance (TER) in AECs. An EGFR-blocking antibody eradicated the development of TER, paracellular influx of dextran, and spatial organization of tight junction. Moreover, the effects of EGFR activation on paracellular permeability were eradicated by knockdown of occludin. To identify the EGFR signaling pathway that regulates permeability barrier development, we investigated the effects of several MAP kinase inhibitors on permeability barrier function. Pretreatment with a JNK-specific inhibitor, but not an ERK- or p38-specific inhibitor, attenuated the development of TER induced by EGFR activation. Rac1 is one of the upstream activators for JNK in EGFR signaling. Rac1 knockdown attenuated the phosphorylation of JNK activation and EGFR-mediated TER development. These results suggest that EGFR positively regulates permeability barrier development through the Rac1/JNK-dependent pathway.  相似文献   

12.
The cell cytoskeleton is widely acknowledged as a master for NK cell function. Specifically, actin filaments guide the NK cell binding to target cells, engendering the formation of the so-called immunological synapse, while microtubules direct the killer behavior. All these cytoskeleton-dependent activities are competently governed by the Rho GTPases, a family of regulatory molecules encompassing the three different subfamilies, Rho, Rac, and Cdc42. By using a Rac GTPase-activating bacterial protein toxin from Escherichia coli named cytotoxic necrotizing factor 1 (CNF1), we obtained results supporting the activation of Rac GTPase as a booster for effector cell-binding efficiency, recruitment ability, and, consequently, cytotoxicity. In particular, the augmented killer capacity of CNF1-treated NK cells was associated with the increased expression of certain cell adhesion or activation-associated molecules and the reshaping of the actin and microtubule networks. Importantly, CNF1 counteracted the activity exerted by toxins disrupting the cytoskeletal architecture. Hence, the activation of Rho GTPases, particularly Rac, induced by CNF1, appears to orchestrate a dynamic cross talk between microtubules and actin filaments, leading to a fruitful NK cell activity and polarization state. Our findings suggest that protein toxins might be viewed as modulators of NK cell cytotoxic activity and could possibly be regarded as useful pharmacological tools for certain Rho-linked immune diseases in the near future.  相似文献   

13.
In normal epithelial cells, cell-matrix interaction is required for cell survival and proliferation, whereas disruption of this interaction causes epithelial cells to undergo apoptosis called anoikis. Here we show that the small GTPase RhoG plays an important role in the regulation of anoikis. HeLa cells are capable of anchorage-independent cell growth and acquire resistance to anoikis. We found that RNA interference-mediated knockdown of RhoG promoted anoikis in HeLa cells. Previous studies have shown that RhoG activates Rac1 and induces several cellular functions including promotion of cell migration through its effector ELMO and the ELMO-binding protein Dock180 that function as a Rac-specific guanine nucleotide exchange factor. However, RhoG-induced suppression of anoikis was independent of the ELMO- and Dock180-mediated activation of Rac1. On the other hand, the regulation of anoikis by RhoG required phosphatidylinositol 3-kinase (PI3K) activity, and constitutively active RhoG bound to the PI3K regulatory subunit p85alpha and induced the PI3K-dependent phosphorylation of Akt. Taken together, these results suggest that RhoG protects cells from apoptosis caused by the loss of anchorage through a PI3K-dependent mechanism, independent of its activation of Rac1.  相似文献   

14.
We previously reported that hydrogen peroxide (H2O2) mediates mitogen activation of ribosomal protein S6 kinase 1 (S6K1) which plays an important role in cell proliferation and growth. In this study, we investigated a possible role of H2O2 as a molecular linker in Rac1 activation of S6K1. Overexpression of recombinant catalase in NIH-3T3 cells led to the drastic inhibition of H2O2 production by PDGF, which was accompanied by a decrease in S6K1 activity. Similarly, PDGF activation of S6K1 was significantly inhibited by transient transfection or stable transfection of the cells with a dominant-negative Rac1 (Rac1N17), while overexpression of constitutively active Rac1 (Rac1V12) in the cells led to an increase in basal activity of S6K1. In addition, stable transfection of Rat2 cells with Rac1N17 dramatically attenuated the H2O2 production by PDGF as compared with that in the control cells. In contrast, Rat2 cells stably transfected with Rac1V12 produced high level of H2O2 in the absence of PDGF, comparable to that in the control cells stimulated with PDGF. More importantly, elimination of H2O2 produced in Rat2 cells overexpressing Rac1V12 inhibited the Rac1V12 activation of S6K1, indicating the possible role of H2O2 as a mediator in the activation of S6K1 by Rac1. However, H2O2 could be also produced via other pathway, which is independent of Rac1 or PI3K, because in Rat2 cells stably transfected with Rac1N17, H2O2 could be produced by arsenite, which has been shown to be a stimulator of H2O2 production. Taken together, these results suggest that H2O2 plays a pivotal role as a mediator in Rac1 activation of S6K1.  相似文献   

15.
Cell invasion by Trypanosoma cruzi extracellular amastigotes (EAs) relies significantly upon the host cell actin cytoskeleton. In past decades EAs have been established as a reliable model for phagocytosis inducer in non-phagocytic cells. Our current hypothesis is that EAs engage a phagocytosis-like mechanism in non-professional phagocytic cells; however, the molecular mechanisms in professional phagocytes still remain unexplored. In this work, we evaluated the involvement of Rac1 and Cdc42 in the actin-dependent internalization of EAs in RAW 264.7 macrophages. Kinetic assays showed similar internalization of EAs in unstimulated RAW and non-phagocytic HeLa cells but increased in LPS/IFN-γ stimulated RAW cells. However, depletion of Rac1, Cdc42 or RhoA inhibited EA internalization similarly in both unstimulated and stimulated RAW cells. Overexpression of active, but not the dominant-negative, construct of Rac1 increased EA internalization. Remarkably, for Cdc42, both the active and the inactive mutants decreased EA internalization when compared to wild type groups. Despite that, both Rac1 and Cdc42 activation mutants were similarly recruited to and colocalized with actin at the EA-macrophage contact sites when compared to their native isoforms. Altogether, these results corroborate that EAs engage phagocytic processes to invade both professional and non-professional phagocytic cells providing evidences of converging actin mediated mechanisms induced by intracellular pathogens in both cell types.  相似文献   

16.
Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by some pathogenic strains of Escherichia coli that specifically activates Rho, Rac, and Cdc42 GTPases. We previously reported that this toxin prevents the ultraviolet-B-induced apoptosis in epithelial cells, with a mechanism that remained to be defined. In this work, we show that the proteasomal degradation of the Rho GTPase is necessary to achieve cell death protection, because inhibition of Rho degradation abolishes the prosurvival activity of CNF1. We hypothesize that Rho inactivation allows the activity of Rac to become dominant. This in turn leads to stimulation of the phosphoinositide 3-kinase/Akt/IkappaB kinase/nuclear factor-kappaB prosurvival pathway and to a remarkable modification in the architecture of the mitochondrial network, mainly consisting in the appearance of elongated and interconnected mitochondria. Importantly, we found that Bcl-2 silencing reduces the ability of CNF1 to protect cells against apoptosis and that it also prevents the CNF1-induced mitochondrial changes. It is worth noting that the ability of a bacterial toxin to induce such a remodeling of the mitochondrial network is herein reported for the first time. The possible pathophysiological relevance of this finding is discussed.  相似文献   

17.
Rac1 protects epithelial cells against anoikis   总被引:6,自引:0,他引:6  
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.  相似文献   

18.
Epithelial–mesenchymal transition (EMT) is a form of epithelial plasticity implicated in fibrosis and tumor metastasis. Here we show that the mechanical rigidity of the microenvironment plays a pivotal role in the promotion of EMT by controlling the subcellular localization and downstream signaling of Rac GTPases. Soft substrata, with compliances comparable to that of normal mammary tissue, are protective against EMT, whereas stiffer substrata, with compliances characteristic of breast tumors, promote EMT. Rac1b, a highly activated splice variant of Rac1 found in tumors, localizes to the plasma membrane in cells cultured on stiff substrata or in collagen-rich regions of human breast tumors. At the membrane, Rac1b forms a complex with NADPH oxidase and promotes the production of reactive oxygen species, expression of Snail, and activation of the EMT program. In contrast, soft microenvironments inhibit the membrane localization of Rac1b and subsequent redox changes. These results reveal a novel mechanotransduction pathway in the regulation of epithelial plasticity via EMT.  相似文献   

19.
Rho GTPases, which are master regulators of both the actin cytoskeleton and membrane trafficking, are often hijacked by pathogens to enable their invasion of host cells. Here we report that the cytotoxic necrotizing factor-1 (CNF1) toxin of uropathogenic Escherichia coli (UPEC) promotes Rac1-dependent entry of bacteria into host cells. Our screen for proteins involved in Rac1-dependent UPEC entry identifies the Toll-interacting protein (Tollip) as a new interacting protein of Rac1 and its ubiquitinated forms. We show that knockdown of Tollip reduces CNF1-induced Rac1-dependent UPEC entry. Tollip depletion also reduces the Rac1-dependent entry of Listeria monocytogenes expressing InlB invasion protein. Moreover, knockdown of Tollip, Tom1 and clathrin, decreases CNF1 and Rac1-dependent internalization of UPEC. Finally, we show that Tollip, Tom1 and clathrin associate with Rac1 and localize at the site of bacterial entry. Collectively, these findings reveal a new link between Rac1 and Tollip, Tom1 and clathrin membrane trafficking components hijacked by pathogenic bacteria to allow their efficient invasion of host cells.  相似文献   

20.
Park S  Kim ES  Noh DY  Hwang KT  Moon A 《Cytokine》2011,55(1):126-133
Ras expression has been suggested to be a marker for tumor aggressiveness of breast cancer. We previously showed that H-Ras, but not N-Ras, induced invasive/migratory phenotypes in MCF10A human breast epithelial cells. The present study aimed to determine the role of granulocyte colony-stimulating factor in H-Ras-induced malignant progression of human breast epithelial cells. Here, we show that G-CSF plays a crucial role in H-Ras-induced MCF10A cell invasion and migration. The siRNA-mediated knockdown of G-CSF significantly reduced H-Ras-induced matrix metalloproteinase (MMP)-2 expression, as well as invasion/migration, suggesting the functional significance of G-CSF in the invasive phenotype of human breast cells. Importantly, the induction of G-CSF expression conferred the invasive/migratory phenotypes to MCF10A cells with up-regulation of MMP-2 and activation of Rac1, MKK3/6, p38 MAPK, Akt, and ERKs. Knockdown of Rac1 by siRNA significantly inhibited MMP-2 upregulation and invasiveness of G-CSF MCF10A cells, demonstrating that G-CSF-induced MMP-2 upregulation and invasive phenotype is mediated by Rac1. Using human breast tissues and sera from breast cancer patients, we further demonstrate that the expression level of G-CSF is strongly correlated with pathologically-diagnosed breast cancer. These data provide a molecular basis for the crucial role of G-CSF in promoting invasiveness of human breast epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号