首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pig skeletal muscle glycogen phosphorylase b was purified using ammonium sulfate fractionation, DEAE-Sephadex A-50 and Sephadex G-200 column chromatography. The purified enzyme was used to immunize rabbits in the presence or in the absence of complete Freund adjuvant. Antibodies against pig phosphorylase in pure form were isolated from rabbit antisera using insoluble immunoadsorbents of pig phosphorylase. Autoantibodies against the rabbit enzyme were obtained from the same antisera using insoluble immunoadsorbents of rabbit phosphorylase. Complete inactivation of pig phosphorylase was accomplished by an antibody/enzyme molar ratio equal to 4 and autoantibody/enzyme molar ratio equal to 130. Complete inactivation of rabbit phosphorylase was accomplished by an antibody/enzyme molar ratio equal to 250 and autoantibody/enzyme molar ratio equal to 160. Passive haemagglutination technique gave positive results with minimum amounts of 0.02 microng/ml and 0.8 microng/ml for pig and rabbit phosphorylase respectively. Kinetic experiments have shown that antibodies and autoantibodies act as noncompetitive inhibitors of both enzymes with respect to AMP and glucose 1-phosphate but exhibit a mixed type of inhibition with respect to glycogen. When glycogen hydrolysates were used as substrate in place of intact glycogen molecules a pronounced decrease in the inhibitory capacity of antienzyme on the enzyme was demonstrated.  相似文献   

2.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

3.
The inhibitory action of nicotinic acid, nicotinamide, N-nicotinoyl-gamma-aminobutyric acid, NAD, NADH, NADP, and NADPH on the rabbit skeletal muscle glycogen phosphorylase b has been studied. The inhibition is reversible and positively cooperative (the value of Hill coefficients were determined for the following compounds: nicotinic acid (28 mM; 1.4), nicotinamide (4.4 mM; 1.2), N-nicotinoyl-gamma-aminobutyric acid (9.5 mM; 1.4), NAD (4.4 mM; 1.2), NADH (0.93 mM; 1.2). NADH-binding site of glycogen phosphorylase b subunit was characterized by the sedimentation velocity method. Microscopic dissociation constant was found to be 86 +/- 9 microM (pH 6.8; 20 degrees C). AMP-induced association of glycogen phosphorylase b is hindered by NADH.  相似文献   

4.
The binding of rabbit muscle glycogen phosphorylase b to F-actin has been studied by sedimentation in analytical centrifuge in 10 mM Tris-acetate buffer pH 6.8 at 20 degrees C. The adsorption capacity of F-actin is equal to (7.8 +/- 0.9) X 10(-7) mole of glycogen phosphorylase b per 1 g of F-actin; the microscopic dissociation constant for the glycogen phosphorylase-F-actin complex is (5.4 +/- 0.5) X 10(-7) M. It was found that the allosteric activator, AMP, facilitates the adsorption of glycogen phosphorylase b on F-actin, whereas the substrate, Pi, and the inhibitor, ATP, cause an opposite effect.  相似文献   

5.
Phosphorylase b kinase was extensively purified from rat liver. It was located in a form which could be activated 20--30-fold by a preincubation with adenosine 3':5'-monophosphate (cyclic AMP) and ATP-Mg. This activation was time-dependent, and was paralleled by a simultaneous incorporation of 32P from [gamma-32P]ATP into two polypeptides which comigrated in sodium dodecyl sulfate gel electrophoresis with the alpha and beta subunits of rabbit skeletal muscle phosphorylase b kinase. The liver enzyme was eluted from Sepharose 4B and Bio-Gel A-50m columns at the same place as muscle phosphorylase b kinase, which is indicative of a molecular weight of 1.3 x 10(6). After activation, the most purified liver preparation had a specific activity about 10-fold less than the homogeneous muscle enzyme at pH 8.2. The inactive enzyme form had a pronounced pH optimum around pH 6.0, whereas the activated form was mostly active above neutral pH. The activation of the enzyme reduced the Km for its substrate phosphorylase b severalfold. Liver phosphorylase b kinase was shown to be partially dependent on Ca2+ ions for its activity: addition of 0.5 mM [ethylenebis-(oxoethylenenitrilo)]tetraacetic acid (EGTA) to the phosphorylase b kinase assay increased the Km for phosphorylase b about twofold for both the inactive and the activated form of liver phosphorylase b kinase, but affected the V of the inactive species only.  相似文献   

6.
Pseudo first order rate constants were determined for the dephosphorylation of heart and skeletal muscle specific phosphorylase a isoenzymes isolated from rabbit and pig using rabbit muscle phosphorylase phosphatase (mol. wt 34,000). The rate constants determined in the absence of ligands, were 4-5 fold lower for heart specific phosphorylases than for skeletal muscle specific ones. Glucose 6-phosphate (0.5-1 mM) enhances the rate of dephosphorylation of heart specific isophosphorylases 3-fold and suspends inhibition by 10(-5) M AMP, however, it has no significant effect on the dephosphorylation of skeletal muscle specific enzymes under the same conditions. Our data support characteristic functional differences between heart and skeletal muscle specific phosphorylases both in rabbit and pig.  相似文献   

7.
Sodium cholate at millimolar concentration is able to induce activity in rabbit muscle phosphorylase b in the absence of AMP. The maximum activation of the enzyme in presence of 7 mM sodium cholate was 24% of that achieved by 1 mM AMP. Other bile salts tested showed a negligible activating effect. The Ka for AMP was lowered fivefold by 5 mM of the steroid detergent, while the cooperative binding of the nucleotide was abolished. Phosphorylase b', a modified form of phosphorylase in which the phosphorylation site has been removed by limited tryptic attack, presented an activation profile similar to that of phosphorylase b. In contrast, phosphorylase a was inhibited by the bile salt, while the activity of liver phosphorylase b was not significantly affected. Modification of the AMP site of the enzyme with 2,3-butanedione could not inhibit sodium-cholate-induced activity. tert-Butanol, an organic solvent activator of phosphorylase b, was found to enhance the activity induced by sodium cholate. The interaction of sodium cholate and phosphorylase b was also followed by difference spectroscopy using a fluorescein isothiocyanate--phosphorylase b conjugate. Furthermore, measurements of electron spin resonance demonstrated that the mobility of a spin-label bound at buried--NH2 groups of phosphorylase b decreases cooperatively with increasing bile salt concentration.  相似文献   

8.
1. The activity of liver phosphorylase b from several mammalian species has been studied. The enzyme from rat or mouse has a higher activity than the rabbit enzyme, which is itself more active than pig liver phosphorylase b. 2 The activity of liver phosphorylase b is influenced by anions and by AMP, and these effects are influenced by pH. Fluoride, which is currently added to the assay mixture of phosphorylase a in crude preparations, is about as active as sulfate as a stimulator of phosphorylase b. 3. When assayed at pH 6.1 and in the presence of 0.15 M NaF, the activity of rat liver phosphorylase b reaches 25% of that of the a enzyme; if 1 mM AMP is also present, this value rises to 50%. 4. Methods are described that allow the determination of liver phosphorylase a without interference of b, and the determination of total phosphorylase (a+b) in rat liver.  相似文献   

9.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

10.
The thermal stability of rabbit skeletal muscle glycogen phosphorylase b was characterized using enzymological inactivation studies, differential scanning calorimetry, and analytical ultracentrifugation. The results suggest that denaturation proceeds by the dissociative mechanism, i.e., it includes the step of reversible dissociation of the active dimer into inactive monomers and the following step of irreversible denaturation of the monomer. It was shown that glucose 1-phosphate (substrate), glucose (competitive inhibitor), AMP (allosteric activator), FMN, and glucose 6-phosphate (allosteric inhibitors) had a protective effect. Calorimetric study demonstrates that the cofactor of glycogen phosphorylase-pyridoxal 5'-phosphate-stabilizes the enzyme molecule. Partial reactivation of glycogen phosphorylase b preheated at 53 degrees C occurs after cooling of the enzyme solution to 30 degrees C. The fact that the rate of reactivation decreases with dilution of the enzyme solution indicates association of inactive monomers into active dimers during renaturation. The allosteric inhibitor FMN enhances the rate of phosphorylase b reactivation.  相似文献   

11.
The effects of polyamines on the oligomeric forms of protein phosphatase-1 (1G), protein phosphatase-2A (2A0, 2A1 and 2A2) and their free catalytic subunits (1C and 2AC) has been studied using homogeneous enzymes isolated from rabbit skeletal muscle. Spermine increased the activity of protein phosphatase-2A towards eight of nine substrates tested. Half-maximal activation was observed at 0.2 mM with optimal effects at 1-2 mM. Above 2 mM, spermine became inhibitory. The most impressive activation of protein phosphatase-2A was obtained with glycogen synthase, especially when phosphorylated at sites-3 (8-15-fold with protein phosphatase-2A1) and phenylalanine hydroxylase (6-7-fold with protein phosphatase-2A1) as substrates. Activation of protein phosphatases 2A0, 2A1 and 2A2 was greater than that observed with 2AC. Spermine was a more potent activator than spermidine, while putrescine had only a small effect. Qualitatively similar results were obtained with five other substrates, although maximal activation was much less (1.3-3-fold with protein phosphatase-2A1). The rate of dephosphorylation of glycogen phosphorylase was decreased by spermine, inhibition being more pronounced with protein phosphatase-2AC than with 2A0, 2A1 and 2A2. Spermine (I50 = 0.1 mM with protein phosphatase-2AC) was a more potent inhibitor than spermidine (I50 = 0.9 mM) or putrescine (I50 = 8 mM). Partially purified preparations of protein phosphatases-2A0, 2A1 and 2A2 from from rat liver were affected by spermine in a similar manner to the homogeneous enzymes from rabbit skeletal muscle. Spermine did not activate protein phosphatase-1 to the same extent as protein phosphatase-2A. Greatest stimulation (2.5-fold) was again observed with glycogen synthase labelled in sites-3, with half-maximal activation at 0.2 mM and optimal effects at 1-2 mM spermine. Spermine was a much more effective stimulator than spermidine, while putrescine was ineffective. Very similar results were obtained with protein phosphatases 1G and 1C. With four other substrates maximal activation by spermine was less than 1.5-fold, while the dephosphorylation of glycogen synthase (labelled in site-2), phosphorylase kinase, pyruvate kinase and glycogen phosphorylase were inhibited. Spermine (I50 = 0.04 mM) was a more potent inhibitor of the dephosphorylation of glycogen phosphorylase than spermidine (I50 = 0.9 mM) or putrescine (I50 = 9 mM).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The interaction of rabbit skeletal muscle glycogen phosphorylase b with methotrexate, folic and folinic acids has been studied. Microscopic dissociation constant for the glycogen phosphorylase b--methotrexate complex determined by analytical ultracentrifugation is 0.43 mM. A subunit of glycogen phosphorylase b is shown to have two sites for methotrexate binding. AMP and FMN diminish the affinity of glycogen phosphorylase b to methotrexate, whereas glycogen does not influence the methotrexate binding to the enzyme. Methotrexate, folic and folinic acids are found to be inhibitors of the muscle glycogen phosphorylase b. The inhibition is reversible and characterized by positive kinetic cooperativity (the Hill coefficient exceeds one unity). The value of the pterin concentration causing two-fold diminishing of the enzymatic reaction rate increased in the order: folic acid (0.65 mM), methotrexate (1.01 mM), folinic acid (3.7 mM). The antagonism between methotrexate, folic and folinic acids, on the one hand, and AMP and FMN, on the other, is revealed for their combined action.  相似文献   

13.
Three peaks of protein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) activity (fractions a, b and c) acting on muscle phosphorylase (1,4-alpha-D-glucan:orthophosphate alpha-D-glucosyltransferase, EC 2.4.1.1) were separated by DEAE-cellulose chromatography of yeast extracts. In contrast to fractions a and b, only fraction c was able to liberate phosphate from 32P-labelled inactivated yeast phosphorylase. The activity of fraction c on both substrates was totally dependent on the presence of bivalent metal ions (Mg2+, Mn2+), and was activated by Mg . ATP. Following freezing in the presence of mercaptoethanol, fractions a and b were also able to dephosphorylate yeast phosphorylase. Rabbit muscle phosphoprotein phosphatase inhibitors 1 and 2 showed that yeast phosphatases acting on muscle phosphorylase were inhibited by inhibitor 2 but not by inhibitor 1. The action of fraction c on yeast phosphorylase was not inhibited by either inhibitor. The native yeast phosphorylase phosphatase (EC 3.1.3.17) was purified 8000-fold by ion-exchange chromatography, casein-Sepharose chromatography and Sephadex G-200 gel filtration. The purified enzyme was unable to dephosphorylate rabbit muscle phosphorylase a, but acted on casein phosphate (Km 3.3 mg/ml). Molecular weight was estimated to be 78 000 and pH optimum 6.5-7.5. Activity of the enzyme was dependent on bivalent metal ions (Mg2+, Mn2+) and was inhibited by fluoride (Ki 20 mM) and succinate (Ki 10 mM).  相似文献   

14.
Phosphorylase plays an important role in energy generation during muscle contraction. We have demonstrated that purified rabbit skeletal muscle phosphorylase a and phosphorylase b bind to rabbit muscle F-actin, F-actin-tropomyosin, F-actin-tropomyosin-troponin, and myofibrils. Neither phosphorylase a nor phosphorylase b binds to myosin. Phosphorylase a and b bind to F-actin with S0.5 values of 1.5 X 10(-6) and 2.1 X 10(-6) M, respectively. At saturation, 0.035 mol of phosphorylase a and b is bound for every seven G-actin monomers in the F-actin polymer. Using the F-actin-tropomyosin-troponin complex as opposed to F-actin as a binding target, there are five- and threefold increases in the maximal binding capacity for phosphorylase a and phosphorylase b, respectively, without a significant change in the S0.5 value for either form of the enzyme. A similar stoichiometry and affinity of phosphorylase binding are observed when myofibrils are used as the binding target. Ca2+ ions and AMP increase the maximal binding capacity for phosphorylase a to myofibrils while ATP decreases the Bmax. Our study suggests that in skeletal muscle, phosphorylase a and phosphorylase b may interact with the thin filament, and that this binding to thin filament proteins may be controlled by changes in sarcoplasmic concentration of Ca2+ and ligands of phosphorylase during muscle contraction.  相似文献   

15.
Interaction of muscle glycogen phosphorylase b (EC 2.4.1.1) with glycogen was studied by sedimentation, stopped-flow and temperature-jump methods. The equilibrium enzyme concentration was determined by sedimentation in an analytical ultracentrifuge equipped with absorption optics and a photoelectric scanning system. The maximum adsorption capacity of pig liver glycogen is 3.64 mumol dimeric glycogen phosphorylase b per g glycogen, which corresponds to 20 dimeric enzyme molecules per average glycogen molecule of Mr 5.5 X 10(6). Microscopic dissociation constants were determined for the enzyme-glycogen complex within the temperature range from 12.7 to 30.0 degrees C. Enzyme-glycogen complexing is accompanied by increasing light scattering and its increment depends linearly on the concentration of the binding sites on a glycogen particle that are occupied by the enzyme. Complex formation and relaxation kinetics are in accordance with the proposed bimolecular reaction scheme. The monomolecular dissociation rate constant of the complex increases as the temperature increases from 12.7 to 30.0 degrees C, whereas the bimolecular rate constant changes slightly and is about 10(8) M-1 X S-1. These data point to the possibility of diffusional control of the complex formation.  相似文献   

16.
Starch phosphorylase from Corynebacterium callunae is a dimeric protein in which each mol of 90 kDa subunit contains 1 mol pyridoxal 5'-phosphate as an active-site cofactor. To determine the mechanism by which phosphate or sulfate ions bring about a greater than 500-fold stabilization against irreversible inactivation at elevated temperatures (> or = 50 degrees C), enzyme/oxyanion interactions and their role during thermal denaturation of phosphorylase have been studied. By binding to a protein site distinguishable from the catalytic site with dissociation constants of Ksulfate = 4.5 mM and Kphosphate approximately 16 mM, dianionic oxyanions induce formation of a more compact structure of phosphorylase, manifested by (a) an increase by about 5% in the relative composition of the alpha-helical secondary structure, (b) reduced 1H/2H exchange, and (c) protection of a cofactor fluorescence against quenching by iodide. Irreversible loss of enzyme activity is triggered by the release into solution of pyridoxal 5'-phosphate, and results from subsequent intermolecular aggregation driven by hydrophobic interactions between phosphorylase subunits that display a temperature-dependent degree of melting of secondary structure. By specifically increasing the stability of the dimer structure of phosphorylase (probably due to tightened intersubunit contacts), phosphate, and sulfate, this indirectly (1) preserves a functional active site up to approximately 50 degrees C, and (2) stabilizes the covalent protein cofactor linkage up to approximately 70 degrees C. The effect on thermostability shows a sigmoidal and saturatable dependence on the concentration of phosphate, with an apparent binding constant at 50 degrees C of approximately 25 mM. The extra stability conferred by oxyanion-ligand binding to starch phosphorylase is expressed as a dramatic shift of the entire denaturation pathway to a approximately 20 degrees C higher value on the temperature scale.  相似文献   

17.
In order to understand how allosteric switches regulate both the catalytic activity and molecular interactions of glycogen phosphorylase, it is necessary to design and analyze variant proteins that test hypotheses about the structural details of the allosteric mechanism. Essential to such an investigation is the ability to obtain large amounts of variant proteins. We developed a system for obtaining milligram amounts (greater than 20 mg/l) of rabbit muscle phosphorylase from bacteria. Phosphorylase aggregates as inactive protein when a strong bacterial promoter is used under full inducing conditions and normal growth conditions. However, when the growth temperature of bacteria expressing phosphorylase is reduced to 22 degrees C we obtain active muscle phosphorylase. The degree to which the induced expression of phosphorylase protein is temperature sensitive depends on the strain of bacteria used. New assay and purification methods were developed to allow rapid purification of engineered phosphorylase proteins from bacterial cultures. The rabbit muscle phosphorylase obtained from the bacterial expression system is enzymatically identical to the enzyme purified from rabbit muscle. The expressed protein crystallizes in the same conditions used for growing crystals of protein from rabbit muscle and the crystal form is isomorphous. Rabbit muscle phosphorylase is one of the largest oligomeric mammalian enzymes successfully expressed in Escherichia coli. Our results indicate that optimization of a combination of growth and induction conditions will be important in the expression of other heterologous proteins in bacteria.  相似文献   

18.
The dephosphorylated form of phosphorylase kinase was purified 700-fold from rabbit heart extract. The purified enzyme had a pH 6.8/pH 8.2 activity ratio of 0.04-0.08 and was completely dependent on Ca2+ with an apparent Ka value for Ca2+ of 2.59 microM at pH 6.8. At free Ca2+ concentrations between 0.057 microM and 400 microM, 1.5 microM rabbit heart troponin complex had no significant effect on the reaction. However, 1.5 microM rabbit skeletal muscle troponin complex stimulated the reaction 1.5-2-fold with a concomitant decrease in the Ka value for Ca2+ to 1.40 microM. No differences in the effects of these troponin complexes were observed when heart-type and skeletal muscle-type phosphorylase b isoenzymes from either rabbit or pig were used as substrate. Similar effects of heart and skeletal muscle troponin complexes were observed on the Ca2+-dependent reaction of the dephosphorylated form of phosphorylase kinase partially purified from rabbit skeletal muscle. A saturating concentration (1.36 microM) of bovine brain calmodulin stimulated 2-5-fold the Ca2+-dependent reaction of skeletal muscle phosphorylase kinase, but not the reaction of heart phosphorylase kinase. Heart troponin complex (12 microM) suppressed 80-100% the stimulatory effect of skeletal muscle troponin complex on the reactions of phosphorylase kinase isoenzymes, but had no significant effect on the stimulation by calmodulin of skeletal muscle phosphorylase kinase reaction.  相似文献   

19.
Previous studies have shown that phosphorylase phosphatase can be isolated from rabbit liver and bovine heart as a form of Mr approximately 35,000 after an ethanol treatment of tissue extracts. This enzyme form was designated as protein phosphatase C. In the present study, reproducible methods for the isolation of two forms of protein phosphatase C from rabbit skeletal muscle to apparent homogeneity are described. Protein phosphatase C-I was obtained in yields of up to 20%, with specific activities toward phosphorylase a of 8,000-16,000 units/mg of protein. This enzyme represents the major phosphorylase phosphatase activity present in the ethanol-treated muscle extracts. The second enzyme, protein phosphatase C-II, had a much lower specific activity toward phosphorylase a (250-900 units/mg). Phosphatase C-I and phosphatase C-II had Mr = 32,000 and 33,500, respectively, as determined by sodium dodecyl sulfate disc gel electrophoresis. The two enzymes displayed distinct enzymatic properties. Phosphatase C-II was associated with a more active alkaline phosphatase activity toward p-nitrophenyl phosphate than was phosphatase C-I. Phosphatase C-II activities were activated by Mn2+, whereas phosphatase C-I was inhibited. Phosphatase C-I was inhibited by rabbit skeletal muscle inhibitor 2 while phosphatase C-II was not inhibited. Both enzymes dephosphorylated glycogen synthase and phosphorylase kinase, but displayed different specificities toward the alpha- and beta-subunit phosphates of phosphorylase kinase (Ganapathi, M. K., Silberman, S. R., Paris, H., and Lee, E. Y. C. (1980) J. Biol. Chem. 246, 3213-3217). The amino acid compositions of the two proteins were similar. Peptide mapping of the two proteins showed that they are distinct proteins and do not have a precursor-proteolytic product relationship.  相似文献   

20.
Zea CJ  Pohl NL 《Biopolymers》2005,79(2):106-113
The glycogen synthase found in Pyrococcus furiosus is a hyperthermophilic biocatalyst that transfers the glucose portion of nucleotide-diphosphoglucose onto a growing carbohydrate biopolymer chain at 80 degrees C. In contrast to the mesophilic rabbit muscle glycogen synthase, the biocatalyst from P. furiosus possesses unusually broad nucleotide tolerance. The enzyme accepts all four common glucose-containing nucleotide-diphosphosugars: ADP-glucose, GDP-glucose, dTDP-glucose, and UDP-glucose. Using an electrospray ionization-mass spectroscopy (ESI-MS) assay, we determined the K(M) and Vmax for GDP-glucose to be 3.9 +/- 0.6 mM and 0.243 +/- 0.009 mM/min, and for dTDP-glucose to be 4.0 +/- 0.5 mM and 0.216 +/- 0.008 mM/min. A related nucleotide sugar, UDP-galactose, was not a reactive substrate, but was instead a competitive inhibitor with a Ki of 17 +/- 2 mM. The glycogen synthase from P. furiosus was shown not to have phosphorylase activity. The DeltaDeltaG of substrate binding was compared between the mesophilic rabbit muscle and the hyperthermophilic P. furiosus glycogen synthase to dissect any differences in sugar nucleotide recognition strategies at elevated temperatures. Both biocatalysts were shown to gain most of their substrate affinity through electrostatic interactions between the enzyme and the alpha-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号