首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we have mapped the onset of hematopoietic development in the mouse embryo using colony-forming progenitor assays and PCR-based gene expression analysis. With this approach, we demonstrate that commitment of embryonic cells to hematopoietic fates begins in proximal regions of the egg cylinder at the mid-primitive streak stage (E7.0) with the simultaneous appearance of primitive erythroid and macrophage progenitors. Development of these progenitors was associated with the expression of SCL/tal-1 and GATA-1, genes known to be involved in the development and maturation of the hematopoietic system. Kinetic analysis revealed the transient nature of the primitive erythroid lineage, as progenitors increased in number in the developing yolk sac until early somite-pair stages of development (E8.25) and then declined sharply to undetectable levels by 20 somite pairs (E9.0). Primitive erythroid progenitors were not detected in any other tissue at any stage of embryonic development. The early wave of primitive erythropoiesis was followed by the appearance of definitive erythroid progenitors (BFU-E) that were first detectable at 1-7 somite pairs (E8.25) exclusively within the yolk sac. The appearance of BFU-E was followed by the development of later stage definitive erythroid (CFU-E), mast cell and bipotential granulocyte/macrophage progenitors in the yolk sac. C-myb, a gene essential for definitive hematopoiesis, was expressed at low levels in the yolk sac just prior to and during the early development of these definitive erythroid progenitors. All hematopoietic activity was localized to the yolk sac until circulation was established (E8.5) at which time progenitors from all lineages were detected in the bloodstream and subsequently in the fetal liver following its development. This pattern of development suggests that definitive hematopoietic progenitors arise in the yolk sac, migrate through the bloodstream and seed the fetal liver to rapidly initiate the first phase of intraembryonic hematopoiesis. Together, these findings demonstrate that commitment to hematopoietic fates begins in early gastrulation, that the yolk sac is the only site of primitive erythropoiesis and that the yolk sac serves as the first source of definitive hematopoietic progenitors during embryonic development.  相似文献   

2.
The gastrulating chick embryo expresses two galactoside-binding lectins of 14 kDa and 16 kDa. These lectins are present in the area pellucida and area opaca, and in the latter are concentrated in the endoderm. Since the area opaca is the progenitor of the yolk sac, we studied the galactose-binding lectins during the development of this extraembryonic organ. In the yolk sac, lectin expression surges between 2 and 4 days, and thereafter remains constant throughout development. Using monoclonal antibodies (mAbs) specific to the 16 kDa yolk sac lectin, and a panel of polyclonal antibodies to the 14 kDa and 16 kDa lectins we studied lectin expression. The mAbs inhibit the hermagglutinating activity of extracts from chick yolk sac, embryonic pectoral muscle, and adult liver, but have no effect on the hemagglutinating activity of extracts from the adult intestine. Immunolocalization studies with the mAbs and polyclonal antibodies indicate that in the less differentiated endodermal cells of the area vitellina the 16 kDa lectin is present in discrete lectin-rich inclusions. In contrast, within the maturing endodermal epithelium of area vasculosa the 16 kDa lectin is present around the intracellular yolk platelets, and is associated with the cytoplasmic matrix. The 16 kDa lectin is also found at the apical cell surface of the yolk sac epithelium, in some regions closely associated with the plasma membrane. The 14 kDa lectin is distributed intracellularly surrounding the yolk platelets of the maturing yolk sac endoderm. The surge in expression of the 16 kDa lectin at the time of expansion of the area opaca suggests that it may be involved in the spreading of this area. Our findings also indicate that as the yolk sac endoderm differentiates into an epithelium intracellular lectin expression changes from predominantly organelle associated to cytoplasm associated. The association of both lectins with yolk suggest that the lectins may also be involved in the processing of intracellular and extracellular yolk proteins. These results, in con junction with previous findings indicating the presence of these lectins in the extracellular matrix (Didier et al., Histochemistry 100:485, 1993; Zalik et al., Intl J Dev Biol 38:55–68, 1994) indicate that these lectins play multiple roles in embryonic development.  相似文献   

3.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

4.
The visceral yolk sac (VYS), composed of extraembryonic mesoderm and visceral endoderm, is the initial site of blood cell development and serves important nutritive and absorptive functions. In the mouse, the visceral endoderm becomes a morphologically distinct tissue at the time of implantation (E4.5), while the extraembryonic mesoderm arises during gastrulation (E6.5–8.5). To isolate genes differentially expressed in the developing yolk sac, polymerase chain reaction (PCR) methods were used to construct cDNA from late primitive streak to neural plate stage (E7.5) murine VYS mesoderm and VYS endoderm tissues. Differential screening led to the identification of six VYS mesoderm-enriched clones: ribosomal protein L13a, the heat shock proteins hsc 70 and hsp 86, guanine-nucleotide binding protein-related gene, cellular nucleic acid binding protein, and ã-enolase. One VYS endoderm-specific cDNA was identified as apolipoprotein C2. In situ hybridization studies confirmed the differential expression of these genes in E7.5 yolk sac tissues. These results indicate that representative cDNA populations can be obtained from small numbers of cells and that PCR methodologies permit the study of gene expression during early mammalian postimplantation development. While all of the mesoderm-enriched genes were ubiquitously expressed in the embryo proper, apolipoprotein C2 expression was confined to the visceral endoderm. These results are consistent with the hypothesis that at E7.5, the yolk sac endoderm provides differentiated liver-like functions, while the newly developing extraembryonic mesoderm is still a largely undifferentiated tissue. © 1995 wiley-Liss, Inc.  相似文献   

5.
The inner cell mass of the blastocyst has differentiated into epiblast and hypoblast (primitive endoderm) prior to implantation. Since endoderm cells extend beyond the epiblast, it can be considered that both parietal and visceral endoderm are present. At implantation, epiblast cells begin to show marked evidence of polarity. They form a spherical aggregate with their basal ends toward the basal lamina and apical ends toward the interior. The potential for an internal space is formed by this change in polarity of the cells. No cytological evidence of separation of those cells that will form amniotic epithelium from the rest of the epiblast is seen until a cavity begins to form. The amniotic epithelium is originally contiguous with overlying cytotrophoblast, and a diverticulum remains in this position during early development. Epiblast forms a pseudostratified columnar epithelium, but dividing cells are situated toward the amniotic cavity rather than basally. The first evidence of a trilaminar disc occurs when a strand of cells contiguous with epiblast is found extending toward visceral endoderm. These presumptive mesoderm cells are undifferentiated, whereas extraembryonic mesoderm cells are already a distinct population forming extracellular materials. After implantation, visceral endoderm cells proliferate forming an irregular layer one to three cells thick. Visceral endoderm cells have smooth apical surfaces, but very irregular basal surfaces, and no basal lamina. At the margins of the disc, visceral endoderm is continuous with parietal endoderm and reflects back over the apices of the marginal visceral endoderm cells. This sacculation by visceral endoderm cells precedes pinching off of the secondary yolk sac from the remaining primary yolk sac.  相似文献   

6.
We report the novel observation that a biphasic, parieto-visceral (PYS/VYS) yolk sac carcinoma can develop from the isolated epiblast of the pre-primitive streak rat embryo in a prolonged cultivation in vivo as a renal isograft. Late 7-day rat egg cylinders were dissected free of the ectoplacental cone and the Reichert's membrane. The middle segment of the cylinder, in which the embryonic and the extraembryonic cell layers partly overlap, were also removed. From the rest of the cylinder the 4 cell layers were isolated and transplanted separately under the kidney capsule of isogenic adult males. After 4 weeks the hypoblast was resorbed, the extraembryonic ectoderm gave rise to hemorrhagic cysts and trophoblastic giant cells, the extraembryonic (visceral yolk sac) endoderm formed benign cystic PYS/VYS tumors, and the epiblast developed into a benign teratoma. After prolonged (7-30 weeks) development of these teratomas as isografts, a malignant yolk sac carcinoma (YSC) developed in 45% of them. It destroyed the teratoma and the recipient's kidney, metastasized to peritoneum and other sites, and caused abundant ascites containing clustered tumor cells. The primary tumor was retransplantable subcutaneously as well as intraperitoneally, and displayed the characteristics of the mixed or biphasic PVYS carcinoma, with a progressive loss of the VYS component with time. Several data are apparently in favor of its origin by transdifferentiation rather than from undifferentiated cells.  相似文献   

7.
Summary The feline yolk sac persists even after the end of its haematopoietic phase with prominent ER-cisternae in the endoderm suggesting biosynthetic capacity. Therefore, yolk sac explants from the 54th day and 57th day were incubated with [3H]-l-leucine in order to study its protein biosynthesis. Newly synthesized proteins were discovered in sliced SDS-polyacrylamide gels by the use of scintillation technique and identified by molecular weight determination and isoelectrofocusing, also using stained electropherograms of unlabeled tissue, serum, and marker proteins. The highest radioactive incorporations were found in 69,000–70,000 dalton proteins and interpreted as serum albumin and -fetoprotein. The autoradiography revealed that the cytoplasm of the endoderm is the site of the most active biosynthesis of proteins which were obviously stored in the ER-cisternae for some time. The yolk sac fluid proteins are almost exclusively serum proteins, although in a very low concentration. We regard a large-scale formation of serum proteins in the yolk sac endoderm as the cause of this organ's very late regression in the cat.  相似文献   

8.
In mice, the yolk sac appears to play a crucial role in nourishing the developing embryo, especially during embryonic days (E) 7;-10. Lipoprotein synthesis and secretion may be essential for this function: embryos lacking apolipoprotein (apo) B or microsomal triglyceride transfer protein (MTP), both of which participate in the assembly of triglyceride-rich lipoproteins, are apparently defective in their ability to export lipoproteins from yolk sac endoderm cells and die during mid-gestation. We therefore analyzed the embryonic expression of apoB, MTP, and alpha-tocopherol transfer protein (alpha-TTP), which have been associated with the assembly and secretion of apoB-containing lipoproteins in the adult liver, at different developmental time points. MTP expression or activity was found in the yolk sac and fetal liver, and low levels of activity were detected in E18.5 placentas. alpha-TTP mRNA and protein were detectable in the fetal liver, but not in the yolk sac or placenta. Ultrastructural analysis of yolk sac visceral endoderm cells demonstrated nascent VLDL within the luminal spaces of the rough endoplasmic reticulum and Golgi apparatus at E7.5 and E8.5. The particles were reduced in diameter at E13.5 and reduced in number at E18.5;-19.The data support the hypothesis that the yolk sac plays a vital role in providing lipids and lipid-soluble nutrients to embryos during the early phases (E7;-10) of mouse development. secretion in mouse yolk sac during embryonic development.  相似文献   

9.
Extracellular glutathione peroxidase (EGPx) is a secreted selenium-dependent enzyme that reduces hydroperoxides and organic hydroperoxides. Selenium deficiency in females is associated with infertility and spontaneous abortion, suggesting a role for selenium-requiring proteins during embryonic development. To gain insight into functions of EGPx in vivo, we determined sites of murine EGPx synthesis by in situ hybridization during embryogenesis and in adult tissues. At E7.5 of development, high EGPx expression was found in the maternally derived deciduum, with lower levels of accumulation in the embryonic visceral endoderm. At E9.5, the major sites of expression were the yolk sac endoderm and heart musculature. By E16.5, EGPx mRNA expression persisted in yolk sac endoderm but also accumulated significantly in atrially derived myocytes, ossification centers, adipose tissue, intestinal epithelium, and in a ventral-to-dorsal gradient in developing skin. Glutathione peroxidase activity due to EGPx protein was identified in the fluids surrounding the developing mouse embryo at midgestation. The expression of EGPx in tissues at the maternal-fetal interface—deciduum, visceral yolk sac, and skin—suggests that EGPx may serve to protect the embryo from oxidant damage. In adult mice, we identified the S1 segment of the kidney proximal tubules as the primary site of EGPx mRNA accumulation, with lower EGPx levels in atrial cardiac muscle, intestine, skin, and adipose tissue. These findings suggest that EGPx may serve a wider antioxident role than previously recognized in the interstitium of multiple localized tissues, particularly those associated with the active transport of lipids. Mol. Reprod. Dev. 49:343–355, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Vascular endothelial growth factor A (VEGFA) plays a pivotal role in the first steps of endothelial and haematopoietic development in the yolk sac, as well as in the establishment of the cardiovascular system of the embryo. At the onset of gastrulation, VEGFA is primarily expressed in the yolk sac visceral endoderm and in the yolk sac mesothelium. We report the generation and analysis of a Vegf hypomorphic allele, Vegf(lo). Animals heterozygous for the targeted mutation are viable. Homozygous embryos, however, die at 9.0 dpc because of severe abnormalities in the yolk sac vasculature and deficiencies in the development of the dorsal aortae. We find that providing 'Vegf wild-type' visceral endoderm to the hypomorphic embryos restores normal blood and endothelial differentiation in the yolk sac, but does not rescue the phenotype in the embryo proper. In the opposite situation, however, when Vegf hypomorphic visceral endoderm is provided to a wild-type embryo, the 'Vegf wild-type' yolk sac mesoderm is not sufficient to support proper vessel formation and haematopoietic differentiation in this extra-embryonic membrane. These findings demonstrate that VEGFA expression in the visceral endoderm is absolutely required for the normal expansion and organisation of both the endothelial and haematopoietic lineages in the early sites of vessel and blood formation. However, normal VEGFA expression in the yolk sac mesoderm alone is not sufficient for supporting the proper development of the early vascular and haematopoietic system.  相似文献   

11.
Development Genes and Evolution - An antiserum was prepared in rabbit against rat visceral yolk sac endoderm. The initial injection was of a ConA-Sepharose purified fraction of endoderm, and...  相似文献   

12.
Summary Specimens of human foetal yolk sac from conceptuses of 8 and 10 weeks menstrual age were studied with the electron microscope. At 8 weeks columns of endodermal cells projected into the underlying mesenchyme. Several types of endodermal cell were identified; some contained much granular endoplasmic reticulum and abundant glycogen; others resembled the haemocytoblasts present in the mesenchyme and yet others contained membrane-bounded channels similar to those seen in megakaryocytes. It was suggested that the endoderm is the site of origin of the blood cells but that, while the platelets may be formed within the endoderm, the normal development of the red cells is conditional upon their early release into the mesenchyme and possibly the attainment of an intravascular position. Intravascular macrophages were identified and their role in determining the nature of the blood picture during the period of functional acitvity of the sac discussed. The morphology of the epithelium on the external surface of the sac was discussed in relation to the possibility of its playing a part in the exchange of materials between the yolk sac and the chorionic cavity.Supported in part by grant no. 5-T01-GM-00582-08 from the U.S. Public Health Service.  相似文献   

13.
The feline yolk sac persists even after the end of its haematopoietic phase with prominent ER-cisternae in the endoderm suggesting biosynthetic capacity. Therefore, yolk sac explants from the 54th day and 57th day were incubated with [3H]-L-leucine in order to study its protein biosynthesis. Newly synthesized proteins were discovered in sliced SDS-polyacrylamide gels by the use of scintillation technique and identified by molecular weight determination and isoelectrofocusing, also using stained electropherograms of unlabeled tissue, serum, and marker proteins. The highest radioactive incorporations were found in 69,000--70,000 dalton proteins and interpreted as serum albumin and alpha-fetoprotein. The autoradiography revealed that the cytoplasm of the endoderm is the site of the most active biosynthesis of proteins which were obviously stored in the ER-cisternae for some time. The yolk sac fluid proteins are almost exclusively serum proteins, although in a very low concentration. We regard a large-scale formation of serum proteins in the yolk sac endoderm as the cause of this organ's very late regression in the cat.  相似文献   

14.
Ultrastructure of the pre-implantation shark yolk sac placenta   总被引:1,自引:0,他引:1  
During ontogeny, the yolk sac of viviparous sharks differentiates into a yolk sac placenta which functions in gas exchange and hematrophic nutrient transport. The pre-implantation yolk sac functions in respiration and yolk absorption. In a 10.0 cm embryo, the yolk sac consists of six layers, viz. (1) somatic ectoderm; (2) somatic mesoderm; (3) extraembryonic coelom; (4) capillaries; (5) endoderm; and (6) yolk syncytium. The epithelial ectoderm is a simple cuboidal epithelium possessing the normal complement of cytoplasmic organelles. The endoplasmic cisternae are dilated and vesicular. The epithelium rests upon a basal lamina below which is a collagenous stroma that contains dense bodies of varying diameter. They have a dense marginal zone, a less dense core, and a dense center. The squamous mesoderm has many pinocytotic caveolae. The capillary endothelium is adjacent to the mesoderm and is delimited by a basal lamina. The endoderm contains yolk degradation vesicles whose contents range from pale to dense. The yolk syncytium contains many morphologically diverse yolk granules in all phases of degradation. Concentric membrane lamellae form around yolk bodies as the main yolk granules begin to be degraded. During degradation, yolk platelets exhibit a vesicular configuration.  相似文献   

15.
Summary Yolk sac resorption, with special reference to the role of the vitelline stalk, was studied in young post-hatched chickens (0, 1, and 2 days old) using a radioactive (14C-PEG-4000) and coloured (Evans Blue) marker injected into the yolk sac lumen of conscious birds. When the animals were newly-hatched and 1 day old, the radioactive material was recovered from the lumen of the gastrointestinal tract, but not when the vitelline diverticulum was tied. These results suggest a role played by the vitelline diverticulum in the removal of vitelline contents during the first post-hatching 48 h of chick life.Abbreviations DPM decays per minute - GI gastrointestinal - PEG polyethylene glycol  相似文献   

16.
We have studied the expression of the maternally derived X chromosome (Xm) and the paternally derived X chromosome (Xp) in female mouse conceptuses on the fourteenth day of gestation. We used an X-linked electrophoretic variant for phosphoglycerate kinase (PGK-1) to estimate the relative proportions of the expression of Xm and Xp in the fetus and in the yolk sac. Our results support the cytological observations of Takagi and Sasaki (1976) and suggest that Xm is preferentially expressed in the mouse yolk sac. Further analysis strongly suggests that the paternally derived Pgk-1 allele (and therefore probably the whole of Xp) is not expressed in the mouse yolk sac endoderm. We have demonstrated that this effect is not caused by a selection pressure exerted by the phenotype of the maternal reproductive tract against cells which express Xp.We therefore, conclude that the parental origin of Xm and Xp marks them as different from one another. Possible causes for the failure of the expression of Xp in the yolk sac endoderm and the tissue specificity of the effect are discussed.  相似文献   

17.
Nitric oxide (NO) has been demonstrated to mediate events during ovulation, pregnancy, blastocyst invasion and preimplantation embryogenesis. However, less is known about the role of NO during postimplantation development. Therefore, in this study, we explored the effects of NO during vascular development of the murine yolk sac, which begins shortly after implantation. Establishment of the vitelline circulation is crucial for normal embryonic growth and development. Moreover, functional inactivation of the endodermal layer of the yolk sac by environmental insults or genetic manipulations during this period leads to embryonic defects/lethality, as this structure is vital for transport, metabolism and induction of vascular development. In this study, we describe the temporally/spatially regulated distribution of nitric oxide synthase (NOS) isoforms during the three stages of yolk sac vascular development (blood island formation, primary capillary plexus formation and vessel maturation/remodeling) and found NOS expression patterns were diametrically opposed. To pharmacologically manipulate vascular development, an established in vitro system of whole murine embryo culture was employed. During blood island formation, the endoderm produced NO and inhibition of NO (L-NMMA) at this stage resulted in developmental arrest at the primary plexus stage and vasculopathy. Furthermore, administration of a NO donor did not cause abnormal vascular development; however, exogenous NO correlated with increased eNOS and decreased iNOS protein levels. Additionally, a known environmental insult (high glucose) that produces reactive oxygen species (ROS) and induces vasculopathy also altered eNOS/iNOS distribution and induced NO production during yolk sac vascular development. However, administration of a NO donor rescued the high glucose induced vasculopathy, restored the eNOS/iNOS distribution and decreased ROS production. These data suggest that NO acts as an endoderm-derived factor that modulates normal yolk sac vascular development, and decreased NO bioavailability and NO-mediated sequela may underlie high glucose induced vasculopathy.  相似文献   

18.
Glycans of the early human yolk sac   总被引:2,自引:0,他引:2  
Summary The pattern of glycan distribution in the early human yolk sac has been investigated using a panel of lectins. Two 6-week and one 8-week human yolk sacs, and one 8-week fetal liver from live, ectopic pregnancies were fixed and embedded in epoxy resin. Lectin histochemistry was carried out on sections of these tissues using 23 biotinylated lectins and an avidin-biotin peroxidase revealing system. Mesothelial surfaces expressed most subsets of N-glycans (other than high mannose types),N-acetyl-lactosamine, sialic acid, andα1,6-N-acetylgalactosamine. Endodermal surface and lateral membranes resembled those of mesothelium, but showed a preponderance ofα2,6-sialyl residues. Most intracellular granules contained N-glycan. There was a marked heterogeneity of granules in the endodermal cells, with different subsets varying in both staining and positional characteristics. The mesenchymal matrix bound most of the lectins used in the study, and expressed fucosyl residues which were also detected in the endothelium. Fetal liver parenchyma showed very similar staining patterns to those seen in the endoderm except for the distribution ofN-acetylglucosamine, which was sparse. Despite some common features, each germ cell layer had a distinct ‘glycotype’, with some saccharides showing extreme topographical restriction.  相似文献   

19.
The chick yolk sac endoderm transports maternal immunoglobulin G (IgG) from the yolk into the embryo during development, providing the newly hatched chick with passive immunity until it becomes immunocompetent. To study this transport process, chick yolk sac endodermal cells isolated from embryos of 6 to 18 days of incubation were grown in vitro on a collagen substrate. The cultured cells possessed a remarkable structural similarity to the in vivo tissue and reformed a polarized confluent epithelium with tight junctions and desmosomes joining the cells at their apical margins. In addition, the cells exhibited apical microvilli, numerous phagolysosomes in the cytoplasm and retained the expression of the yolk sac endoderm-specific enzyme marker, cysteine lyase. Importantly, the cultured cells retained the ability to specifically bind IgG as demonstrated by indirect immunofluorescence. Chicken IgG bound to the cultured cells at 4 degrees C in a diffuse pattern that clustered into a punctate pattern when a second antibody was used. Cultures from yolk sacs of day 6 through day 18 of development all demonstrated this immunofluorescent labeling for at least 14 days in culture. These results demonstrate that cultured yolk sac endoderm maintains its differentiated morphology and ability to bind IgG.  相似文献   

20.
Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupted angiogenesis in mesoderm derivatives and altered epithelial characteristics in the visceral endoderm. Significant changes in both cell death and proliferation were confined to the YY1-expressing yolk sac mesoderm indicating that loss of YY1 in the visceral endoderm causes defects in the adjacent yolk sac mesoderm. Production of Vascular Endothelial Growth Factor A (VEGFA) by the visceral endoderm is essential for normal growth and development of the yolk sac vasculature. Reduced levels of VEGFA are observed in the cKO yolk sac, suggesting a cause for the angiogenesis defects. Ex vivo culture with exogenous VEGF not only rescued angiogenesis and apoptosis in the cKO yolk sac mesoderm, but also restored the epithelial defects observed in the cKO visceral endoderm. Intriguingly, blocking the activity of the mesoderm-localized VEGF receptor, FLK1, recapitulates both the mesoderm and visceral endoderm defects observed in the cKO yolk sac. Taken together, these results demonstrate that YY1 is responsible for maintaining VEGF in the developing visceral endoderm and that a VEGF-responsive paracrine signal, originating in the yolk sac mesoderm, is required to promote normal visceral endoderm development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号