首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase.  相似文献   

2.
A series of shape-modified flexible nucleosides ('fleximers', 1, 2, and 3) was modeled, synthesized and subsequently assayed against S-adenosyl-L-homocysteine hydrolase (SAHase). No inhibitory activity was observed for the adenosine fleximer, which served as a substrate, but moderate inhibitory activity was exhibited by the guanosine fleximers. This is the first known report of a guanosine nucleoside analogue possessing activity against SAHase.  相似文献   

3.
Abstract

The ability of some substrate-analogues to inhibit or to inactivate S-adenosylhomocysteine hydrolase (SAHase) purified from bovine pancreas was investigated. Our results confirm that 3-deazaarysteromicin (DZAry) is a more potent competitive inhibitor than 3-deazaadenosine (DZA), while nebularine (purine riboside), contrary to previous reports, showed an uncompetitive inhibition. Moreover, 2-chloroadenosine and 2′-deoxyadenosine were found to be irreversible inactivators of SAHase with increasing potency, respectively. Ki values found for these drugs were of the same order of magnitude as those reported for SAHases from other mammalian tissues. The SAHase substrate-analogues studied are believed to act as antineoplastic and/or antiviral agents. It is conceivable to postulate that their therapeutic effects could be, at least in part, attributable to inhibition or even to inactivation of SAHase which, in turn, causes a reduction in S-adenosylmethionine-dependent methylation reactions.  相似文献   

4.
To find out potent inhibitors of S-adenosylhomocysteine hydrolase (SAHase), several deazaadenosine analogues synthesized in this laboratory and some naturally occurring nucleoside analogues were examined with SAHases from yellow lupin seeds and rabbit liver. Neplanocin A, an antibiotic, inhibited both enzymes more potently than aristeromycin which was also an antibiotic and known as one of the most potent inhibitors of SAHase. The 3-deazaadenine derivatives (2'-deoxy, arabinosyl, xylosyl) inactivated lupin SAHase as potent as 3-deazaadenosine. Whereas, inhibitory activities of 1-deazaadenosine, its derivatives, and 7-deazaadenosine (tubercidin) were very weak.  相似文献   

5.
Ab initio calculations (B3LYP/Lanl2DZ level of theory) were performed in this study to determine all the structural and catalytic zinc parameters required in order to study MMPs and their complexes with hydroxamate inhibitors by means of the AMBER force field. The parameters thus obtained were used in order to study the docking of some known MMPi (Batimastat, CGS 27023A and Prinomastat) and our previously described inhibitor a which had shown an inhibitory activity for MMP-1, and -2, with the aim of explaining the different selectivity. On this basis the two enantiomers (R)-b and (S)-b were designed and synthesized, as more potent MMP-2 inhibitors than our previously described inhibitor a. Between these two enantiomers the eutomer (R)-b proved to be 24.7 times and 15.3 times more potent than CGS 27023A and the parent compound a on MMP-2, maintaining a higher index of MMP-2/MMP-1 selectivity compared with CGS 27023A and the more potent inhibitor Prinomastat. The hydroxamate (R)-b can be considered as a progenitor of a new class of biphenylsulfonamido-based inhibitors that differ from compound a in the presence of an alkyl side chain on the C alpha atom, and show different potency and selectivity profiles on the two MMPs considered.  相似文献   

6.
The inhibitory potency of separate enantiomers of thiorphan and retrothiorphan has shown that several particularities of the active site of thermolysin are also present in the neutral endopeptidase 24.11, "enkephalinase", such as its ability: i) to recognize a retroamide bond as well as a standard amide bond, ii) to interact similarly with residues in P1' position of either R or S configuration in the thiorphan series but contrastingly to discriminate between the R and S isomers in the retrothiorphan series. These four inhibitors were modellized in the thermolysin active site and their spatial arrangement compared with that of a thiol inhibitor co-crystallized with thermolysin. In all cases, the essential interactions involved in the stabilization of the bound inhibitor were conserved. However, the bound (R) retrothiorphan displayed unfavorable intramolecular contacts, accounting for its lower inhibitory potency for the two metallopeptidases.  相似文献   

7.
Coultrap SJ  Bayer KU 《PloS one》2011,6(10):e25245
BACKGROUND: CaM-KIIN has evolved to inhibit stimulated and autonomous activity of the Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) efficiently, selectively, and potently (IC50 ~100 nM). The CN class of peptides, derived from the inhibitory region of CaM-KIIN, provides powerful new tools to study CaMKII functions. The goal of this study was to identify the residues required for CaMKII inhibition, and to assess if artificial mutations could further improve the potency achieved during evolution. METHODOLOGY/PRINCIPAL FINDINGS: First, the minimal region with full inhibitory potency was identified (CN19) by determining the effect of truncated peptides on CaMKII activity in biochemical assays. Then, individual residues of CN19 were mutated. Most individual Ala substitutions decreased potency of CaMKII inhibition, however, P3A, K13A, and R14A increased potency. Importantly, this initial Ala scan suggested a specific interaction of the region around R11 with the CaMKII substrate binding site, which was exploited for further rational mutagenesis to generate an optimized pseudo-substrate sequence. Indeed, the potency of the optimized peptide CN19o was >250fold improved (IC50 <0.4 nM), and CN19o has characteristics of a tight-binding inhibitor. The selectivity for CaMKII versus CaMKI was similarly improved (to almost 100,000fold for CN19o). A phospho-mimetic S12D mutation decreased potency, indicating potential for regulation by cellular signaling. Consistent with importance of this residue in inhibition, most other S12 mutations also significantly decreased potency, however, mutation to V or Q did not. CONLUSIONS/SIGNIFICANCE: These results provide improved research tools for studying CaMKII function, and indicate that evolution fine-tuned CaM-KIIN not for maximal potency of CaMKII inhibition, but for lower potency that may be optimal for dynamic regulation of signal transduction.  相似文献   

8.
The structure-activity relationship of Rho kinase inhibitors bearing an isoquinoline scaffold was studied. N-(1-Benzyl-3-pyrrolidyl)-N-(5-isoquinolyl)amine analogues were optimized with respect to their inhibitory potencies for the enzyme and for chemotaxis. The potent analogues were further evaluated by an ex vivo test in which the selected compounds were orally administered to rats, and the Rho kinase inhibitory potency observed in the rat serum was evaluated 3h after the administration. Compound 23g showed a high level of Rho kinase inhibitory activity in the rat serum and was stable in an in vitro metabolic test using a microsomal cytochrome preparation. The (R)-isomer of 23g displayed a higher level of inhibitory potency than the (S)-isomer in a cell-free kinase assay and in the cell migration assay (IC(50)(ENZ)=25 nM and IC(50)(MCP)=1 microM). The (R)-isomer successfully inhibited the phosphorylation of MBS (myosin-binding subunit) in cells.  相似文献   

9.
Four stereoisomers of 4-methyl-1-[N2-(3-methyl-1,2,3,4-tetrahydro-8-quinolinesulfonyl)-L-arginyl]-2-piperidinecarboxylic acid were synthesized and examined for the inhibitory effect on thrombin. The inhibitory potency varied largely with the stereo-configuration of the 4-methyl-2-piperidinecarboxylic acid portion. The (2R, 4R)-isomer was the most potent inhibitor with a Ki of 0.019 μM, while the (2R, 4S) and (2S, 4R)-isomers showed the values of Ki 0.24 and 1.9 μM, respectively. The least potent inhibitor, (2S, 4S)-isomer, showed a Ki of 280 μM which is approximately 15,000 times that of (2R, 4R)-isomer.  相似文献   

10.
The potency of thrombin inhibition by 4-methyl-1-[N2-[(3-methyl-1,2,3,4-tetrahydro-8-quinolinyl)-sulfony l]- L-arginyl]-2-piperidinecarboxylic acid (MQPA) depended on the stereoconformation of the 2-piperidinecarboxylic acid moiety. Ki values for bovine alpha-thrombin were 0.019 microM with (2R,4R)-MQPA, 0.24 microM with (2R,4S)-MQPA, 1.9 microM with (2S,4R)-MQPA, and 280 microM with (2S,4S)-MQPA. (2R,4R)-MQPA of the four stereoisomers of MQPA was also the most potent inhibitor for other trypsin-like serine proteases with Ki values of 5.0 microM for trypsin, 210 microM for factor Xa, 800 microM for plasmin, and 1500 microM for plasma kallikrein. Examination of the potency of thrombin inhibition by arginine derivatives related to MQPA in structure suggested the presence of a specific binding site for the carboxamide portion (C-terminal side). The relative inhibitory potency of the four stereoisomers of MQPA for trypsin was nearly identical with that for thrombin, suggesting that the specific binding site for the carboxamide portion is present in both enzymes. Modification of thrombin by phosphopyridoxylation or the presence of heparin did not significantly alter the binding of MQPA.  相似文献   

11.
The synthesis of racemic and enantiomerically pure 3-butanamidoquinuclidines ((+/-)-Bu, (R)-Bu and (S)-Bu), (1-3) and 3-benzamidoquinuclidines ((+/-)-Bz, (R)-Bz, and (S)-Bz), (4-6) is described. The N-quaternary derivatives, N-benzyl-3-butanamidoquinuclidinium bromides ((+/-)-BnlBu, (R)-BnlBu and (S)-BnlBu), (7-9) and N-benzyl-3-benzamidoquinuclidinium bromides ((+/-)-BnlBz, (R)-BnlBz and (S)-BnlBz), (10-12) were subsequently synthesized. The interaction of the four enantiomerically pure quaternary derivatives with horse serum butyrylcholinesterase (BChE) was tested. All tested compounds inhibited the enzyme. The best inhibitior of the enzyme was (S)-BnlBz with a K(i) = 3.7 microM. The inhibitor potency decreases in order (S)-BnlBz > (R)-BnlBz > (R)-BnlBu > (S)-BnlBu.  相似文献   

12.
S-Adenosylhomocysteine hydrolase (SAHase) was resolved into apoenzyme and NAD+ by acidic ammonium sulfate treatment. The apoenzyme was catalytically inactive, but could be reconstituted to active enzyme with NAD+. Reduced SAHase (ENADH) that was prepared by reconstitution of the apoenzyme with NADH was catalytically inactive. ENADH was oxidized by 3'-ketoadenosine to active SAHase. The recovery of activity paralleled the oxidation of enzyme-bound NADH. The association rate constant for ENADH and 3'-ketoadenosine was 6.1 x 10(2) M-1 s-1, and the dissociation rate constant was calculated to be 4 x 10(-7) s-1. This association rate constant was considerably smaller than the association rate constant for adenosine and SAHase (greater than 10(7) M-1 s-1). However, the observed pseudo first-order rate constant for reaction of 3'-ketoadenosine with ENADH (0.6 s-1 with 1 mM 3'-ketoadenosine) approached kcat for the hydrolytic reaction (1.2 s-1). Thus, bound 3'-ketoadenosine probably reacted sufficiently rapidly with ENADH to be considered a kinetically competent intermediate. The dissociation constants of SAHase for adenosine and 4',5'-dehydroadenosine, substrates for the enzyme, were 9 and 14 microM, respectively. In contrast, the dissociation constants of ENADH for 3'-ketoadenosine and 4',5'-dehydro-3'-ketoadenosine, intermediates of the catalytic reaction, were significantly lower with values of 600 and 300 pM, respectively. The equilibrium constant for reduction of enzyme-bound NAD+ in the absence of an adenosine analogue, as estimated from cyanide binding studies, was 10-fold more favorable than that for free NAD+. ENADH was highly fluorescent (emission maximum 428 nm, excitation 340 nm) with a quantum yield that was six times that of free NADH. Since SAHase reduced by adenosine was not highly fluorescent, enzyme-bound intermediates quenched the fluorescence of enzyme-bound NADH. Adenosine and adenine quenched the fluorescence of ENADH. Cyanide formed a complex with SAHase that was analogous to ENADH. Adenine stabilized this complex sufficiently that addition of 65 microM adenine and 25 mM cyanide to SAHase caused total complex formation with loss of over 95% of the catalytic activity.  相似文献   

13.
The enantiomers of formoterol (R;R and S;S) and their diastereomers (R;S and S;R) were synthesized and purified using a new procedure which required the preparation of the (R;R)- and (S;S)-forms of N-(1-phenylethyl)-N-(1-(p-methoxyphenyl)-2-propyl)-amine as important intermediates. The enantiomeric purity obtained was greater than 99.3%, usually greater than 99.7%. The four stereoisomers were examined with respect to their ability to interact in vitro with beta-adrenoceptors in tissues isolated from guinea pig. The effects measured were (1) relaxation of the tracheal smooth muscle (mostly beta 2), (2) depression of subtetanic contractions of the soleus muscle (beta 2), and (3) increase in the force of the papillary muscle of the left ventricle of the heart (beta 1). All enantiomers caused a concentration-dependent and complete relaxation of the tracheal smooth muscle which was inhibited by propranolol. The order of potency was (R;R) much greater than (R;S) = (S;R) greater than (S;S). There was a 1,000-fold difference in potency between the most and the least potent isomer. The presence of the (S;S)-isomer did not affect the activity of the (R;R)-isomer on the tracheal smooth muscle. Also on the skeletal and cardiac muscles (R;R)-formoterol was more potent than its (R;S)-isomer. The selectivity for beta 2-adrenoceptors appeared to be slightly higher for the (R;R)-isomer than for the (R;S)-isomer. The potency of the (S;R)- and (S;S)-isomers on the papillary muscle was too low to be determined accurately.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Exo FM 24 (1-(2-exo-bicyclo[2,2,1]hept-2-ylphenoxy)-3[(1-methylethyl) amino]-2-propanol hydrocloride, a long lasting β-blocker is a mixture of four enantiomers. Exo FM 24 and its endo derivative were 5 to 8 times more potent after preincubation on [3H]DHA binding to rat brain membranes. Similar results were obtained with the four enantiomers, the order of potency being (αS,2S) > (αR,2S) > (αS,2R) > (αR,2R). These four enantiomers behave as competitive antagonists when no preincubation is performed but blocked β-receptors in a non competitive manner after preincubation. Under conditions in which the effect of (S,R) propranolol was completely reversed (7 cycles of washing), the effect of the two 2 S enantiomers was not reversed whereas the effect of the two 2R enantiomers was partially reversed. The potency and duration of blockade of β-receptors, as measured by the in vivo binding of [125I] hydroxybenzylpindolol to mouse brain, heart and lung, correlated very well with the in vitro results. The potency and duration of exo FM 24 appeared to be the mean of its four enantiomers. It is proposed that the exo FM 24 formed a reversible complex with β-receptors which is slowly transformed to a non competitive slowly reversible complex which corresponds to the two 2R enantiomers, and to a non competitive irreversible complex which corresponds to the two 2S enantiomers.  相似文献   

15.
A series of alkyl and aryl phosphonyl, thiophosphonyl, and dithiophosphonyl derivatives of (S)- and (R)-glutamic acid were prepared and examined for inhibitory potency against glutamate carboxypeptidase (carboxypeptidase G). The acquisition of the phosphonamidodithioic acids and the individual phosphonamidothioic acid diastereomers was achieved through a common phosphonamidothiolate precursor, which also allowed for the chromatographic resolution of the chiral phosphorus center of the phosphonamidothioic acids. The most potent inhibitor of the series was the n-butylphosphonamidate derivative of the natural isomer of glutamic acid. Although each diastereomeric pair of three phosphonamidothionates exhibited stereoselective inhibition consistent with the configuration of the chiral phosphorus center, this effect was generally not remarkable. More important, was the effect of carbon stereochemistry upon glutamate carboxypeptidase inhibition as exemplified by a limited series of enantiomeric pairs of phosphonamidate and phosphonamidodithionate derivatives of glutamic acid. The phosphonamidate analogs derived from the unnatural stereoisomer of glutamic acid were devoid of inhibitory potency in contrast to their enantiomers. Surprisingly, the phosphonamidodithionates derived from the unnatural stereoisomer of glutamic acid demonstrated greater inhibitory potency than their naturally-derived antipodes.  相似文献   

16.
Stereoisomers, R(?) and S(+), of five psychotomimetic phenyliso-propylamines contracted isolated strips of sheep umbilical arteries. The compounds exhibited the following order of potency: 2,5-dimethoxy-4-bromo-amphetamine (DOB) > 2,5-dimethoxy-4-ethyl-amphetamine DOET) > 2,5-dimethoxy-4-methyl-amphetamine (DOM) > 2,5-dimethoxy-amphetamine (2,5-DMA) > 4-methoxy-amphetamine (PMA). Stereoselectivity was observed in that the R(?) isomers were more active than the S(+) isomers except for PMA. Evidence was obtained for the action of these hallucinogens on 5-hydroxytryptamine receptors. There was a general correlation of smooth muscle stimulating activity with known hallucinogenic activity.  相似文献   

17.
As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1) protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S)-crizotinib against MTH1 is about 20 times over that of (R)-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD) simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S)-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) and Adaptive biasing force (ABF) methodologies is much lower than that of (R)-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S)-crizotinib and (R)-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S)-crizotinib to MTH1. The adaptive biasing force (ABF) method was further employed to elucidate the unbinding process of (S)-crizotinib and (R)-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S)-crizotinib from the binding pocket is different from (R)-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.  相似文献   

18.
The lethal nonagouti (a(x)) mutation is a hypomorphic allele of the agouti coat color locus which, when homozygous, also leads to embryonic death around the time of implantation. To understand the molecular basis of these phenotypes, we identified and cloned a deletion breakpoint junction present in the ax chromosome. Long range restriction mapping demonstrated a simple deletion of approximately 100 kb, which does not affect agouti coding sequences, but begins only 4 kb 3' of the last exon, and thus may affect coat color by removing an agouti 3' enhancer. The Ahcy gene, which codes for the enzyme S-adenosylhomocysteine hydrolase (SAHase), is contained within a 20 kb region within the a(x) deletion. SAHase RNA and protein were detectable in early blastocysts and in embryonic stem cells, respectively, and analysis of embryos derived from an a(x)/a x a(x)/a embryo intercross indicated that a(x)/a embryos die between the late blastocyst and early implantation stages. Treatment of cultured embryos with an SAHase inhibitor, 3-deazaaristeromycin, or with metabolites that can result in elevated levels of cellular SAH, resulted in an inhibition of inner cell mass development, suggesting that loss of SAHase activity in a(x)/a(x) embryos is sufficient to explain their death around the time of implantation.  相似文献   

19.
Recombinant S-adenosylhomocysteine hydrolase from Corynebacterium glutamicum (CgSAHase) was covalently bound to Eupergit® C. The maximum yield of bound protein was 91% and the catalytic efficiency was 96.9%. When the kinetic results for the immobilized enzyme were compared with those for the soluble enzyme, no decrease in the catalytic efficiency of the former was detected. Both soluble and immobilized enzymes showed similar optimum pH and temperature ranges. The reuse of immobilized CgSAHase caused a loss of synthetic activity due to NAD+ release, although the binding to the support was sufficiently strong for up to 5 cycles with 95% conversion efficiency. The immobilized enzyme was incubated every 3 cycles with 100 μM NAD+ to recover the loss of activity after 5 cycles. This maintained the activity for another 50 cycles. The purification of S-adenosylhomocysteine (SAH) provided an overall yield of 76% and 98% purity as determined by HPLC and NMR analyses. The results indicate the suitability of immobilized CgSAHase for synthesizing SAH and other important S-nucleosidylhomocysteine.  相似文献   

20.
Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号