首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A biosensor for the specific determination of uric acid in urine was developed using urate oxidase (EC 1.7.3.3) in combination with a dissolved oxygen probe. Urate oxidase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane to serve as enzyme electrode. The electrode response was maximum when 50 mM glycine buffer was used at pH 9.2 and 35 degrees C. The enzyme electrode response depends linearly on uric acid concentration between 5-40 microM with a response time of 5 min. The enzyme electrode is stable for more than 2 weeks and during this period over 35 assays were performed.  相似文献   

2.
An uric acid biosensor fabricated from a uricase-immobilized eggshell membrane and an oxygen electrode was presented. The detection schemes involve the enzymatic reactions of the uricase leading to the depletion of dissolved oxygen level upon exposure to uric acid solution. The decrease in oxygen level was monitored and related to the uric acid concentration. The scanning electron micrographs show the microstructure of the eggshell membrane within which the uricase is successfully immobilized. The effects of enzyme loading, pH, temperature, and phosphate buffer concentration on the response of the biosensor were investigated in detail. The uric acid biosensor has a linear response range of 4.0-640 microM with a detection limit of 2.0 microM (S/N=3). The response time was less than 100 s. The biosensor exhibited good repeatable response to a 0.10mM uric acid solution with a relative standard deviation of 3.1% (n=7). The reproducibility of fabrication of the biosensors using four different membranes was good with a R.S.D. of 3.2%. The biosensor showed extremely good stability with a shelf-life of at least 3 months. Some common potential interferents in samples such as glucose, urea, ascorbic acid, lactic acid, glycine, DL-alpha-alanine, DL-cysteine, KCl, NaCl, CaCl2, MgSO4, and NH4Cl showed no interferences on the response of the uric acid biosensor. The biosensor was successfully applied to determine the uric acid level in some human serum and urine samples, and the results agreed well with those obtained by a commercial colorimetric assay kit.  相似文献   

3.
The simultaneous encapsulation of a coupled uricase-peroxidase system and amplex red in a sol-gel matrix allows one to obtain a reagent-less and ready-to-use fluorescent biosensor for the accurate detection of uric acid in highly diluted biological fluids. The detection limit of the prepared biosensor was found to be 20 nM and was linear up to 1 microM. The high sensitivity found for the biosensor permitted a reliable determination of uric acid concentrations in the presence of interfering species (e.g., ascorbic acid) just by sample dilution (up to 50000 for urine and 10000 for serum and blood). The sol-gel encapsulation preserved the hierarchy of the enzyme activity as demonstrated by the performance of the fluorescent biosensor.  相似文献   

4.
A new amperometric microbial biosensor based on Saccharomyces cerevisiae NRRL-12632 cells, which had been induced for lysine oxidase enzyme and immobilized in gelatin by a cross-linking agent was developed for the sensitive determination of L-lysine amino acid. To construct the microbial biosensor S. cerevisiae cells were activated and cultured in a suitable culture medium. By using gelatine (8.43 mg cm(-2)) and glutaraldehyde (0.25%), cells obtained in the logarithmic phase of the growth curve at the end of a 14 h period were immobilized and fixed on a pretreated oxygen sensitive Teflon membrane of a dissolved oxygen probe. The assay procedure of the microbial biosensor is based on the determination of the differences of the respiration activity of the cells on the oxygenmeter in the absence and the presence of L-lysine. According to the end point measurement technique used in the experiments it was determined that the microbial biosensor response depended linearly on L-lysine concentrations between 1.0 and 10.0 microM with a 1 min response time. In optimization studies of the microbial biosensor, the most suitable microorganism quantities were found to be 0.97x10(5)CFU cm(-2). In addition phosphate buffer (pH 7.5; 50 mM) and 30 degrees C were obtained as the optimum working conditions. In characterization studies of the microbial biosensor some parameters such as substrate specificity, interference effects of some substances on the microbial biosensor responses, reproducibility of the biosensor and operational and storage stability were investigated.  相似文献   

5.
Application of a biosensor for monitoring of ethanol   总被引:4,自引:0,他引:4  
An alcohol biosensor for the measurement of ethanol has been developed. It comprises an alcohol oxidase/chitosan immobilized eggshell membrane and a commercial oxygen sensor. Ethanol determination is based on the depletion of dissolved oxygen content upon exposure to ethanol solution. The decrease in oxygen level was monitored and related to the ethanol concentration. The biosensor response depends linearly on ethanol concentration between 60 microM and 0.80 mM with a detection limit of 30 microM (S/N=3) and 1 min response time. In the optimization studies of the enzyme biosensor the most suitable enzyme and chitosan amounts were found to be 1.0 mg and 0.30% (w/v), respectively. The phosphate buffer (pH 7.4, 25 mM) and room temperature (20-25 degrees C) were chosen as the optimum working conditions. In the characterization studies of the ethanol biosensor some parameters such as interference effects, operational and storage stability were studied in detail. The biosensor was also tested with various wine samples. The results of this newly developed biosensor were comparable to the results obtained by a gas chromatographic method.  相似文献   

6.
Yu J  Wang S  Ge L  Ge S 《Biosensors & bioelectronics》2011,26(7):3284-3289
In this work, chemiluminescence (CL) method was combined with microfluidic paper-based analytical device (μPAD) to establish a novel CL μPAD biosensor for the first time. This novel CL μPAD biosensor was based on enzyme reaction which produced H(2)O(2) while decomposing the substrate and the CL reaction between rhodanine derivative and generated H(2)O(2) in acid medium. Microchannels in μPAD were fabricated by cutting method. And the possible CL assay principle of this CL μPAD biosensor was explained. Rhodanine derivative system was used to reach the purpose of high sensitivity and well-defined signal for this CL μPAD biosensor. And the optimum reaction conditions were investigated. The quantitative determination of uric acid could be achieved by this CL μPAD biosensor with accurate and satisfactory result. And this biosensor could provide good reproducible results upon storage at 4°C for at least 10 weeks. The successful integration of μPAD and CL reaction made the final biosensor inexpensive, easy-to-use, low-volume, and portable for uric acid determination, which also greatly reduces the cost and increases the efficiency required for an analysis. We believe this simple, practical CL μPAD biosensor will be of interest for use in areas such as disease diagnosis.  相似文献   

7.
A new amperometric biosensor for determining cholesterol based on deflavination of the enzyme cholesterol oxidase (ChOx) and subsequent reconstitution of the apo-protein with a complexed flavin adenine dinucleotide (FAD) monolayer is described. The charge transfer mediator pyrroquinoline quinone (PQQ) was covalently bound to a cystamine self-assembled monolayer (SAM) on an Au electrode. Boronic acid (BA) was then bound to PQQ using the carbodiimide procedure, and the BA ligand was complexed to the FAD molecules on which the apo-ChOx was subsequently reconstituted. The effective release of the FAD from the enzyme and the successful reconstitution were verified using molecular fluorescence and cyclic voltammetry. The optimal orientation of FAD toward the PQQ mediator and the distances between FAD and PQQ and between PQQ and electrode enhance the charge transfer, very high sensitivity (about 2,500 nAmM(-1)cm(-2)) being obtained for cholesterol determination. The biosensor is selective toward electroactive interferents (ascorbic acid and uric acid) and was tested in reference serum samples, demonstrating excellent accuracy (relative errors below 3% in all cases). The biosensor activity can be successfully regenerated in a simple process by successive reconstitution with batches of recently prepared apo-ChOx on the same immobilized Au/SAM-PQQ-BA-FAD monolayer (it was tested five times); the lifetime of the biosensor is about 45-60 days.  相似文献   

8.
In this study, an amperometric biosensor based on cucumber tissue homogenate was developed for the determination of glutathione. Cucumber (Cucumis sativus L.) tissue homogenate was used as the biological material. The cucumber tissue homogenate was cross-linked with gelatine using glutaraldehyde and fixed on a pretreated teflon membrane. The principle of the measurements was based on the determination of the decrease in the differentiation of oxygen level which had been caused by the inhibition of ascorbate oxidase in the biological material by glutathione. Determinations were carried out by standard curves which were obtained by the measurement of the decrease in the consumed oxygen level related to glutathione concentration. Optimization and characterization studies of the biosensor were carried out and a linearity in the gamma-L-glutamyl-L-cysteinyl-glycine (GSH) concentration range 0.1-2 microM was obtained when 600 microM ascorbic acid was used as a substrate. The repeatability experiments (n = 7) revealed that for 1.5 microM GSH, the average value (x), standard deviation (S.D.) and variation coefficient (C.V.) were 1.517 microM, 4.72 x 10(-5) 3.11%, respectively. The biosensor useful lifetime was at least 2 months. The results of some plant samples analyzed with the presented biosensor agreed well with the spectrophotometric method (Ellman's reagent) used as a reference.  相似文献   

9.
Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.  相似文献   

10.
Boron-doped diamond has drawn much attention in electrochemical sensors. However there are few reports on non-doped diamond because of its weak conductivity. Here, we reported a glucose biosensor based on electrochemical pretreatment of non-doped nanocrystalline diamond (N-NCD) modified gold electrode for the selective detection of glucose. N-NCD was coated on gold electrode and glucose oxidase (GOx) was immobilized onto the surfaces of N-NCD by forming amide linkages between enzyme amine residues and carboxylic acid groups on N-NCD. The anodic pretreatment of N-NCD modified electrode not only promoted the electron transfer rate in the N-NCD thin film, but also resulted in a dramatic improvement in the reduction of the dissolved oxygen. This performance could be used to detect glucose at negative potential through monitoring the current change of oxygen reduction. The biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), acetaminophen (AP) and uric acid (UA). A wide linear calibration range from 10 microM to 15 mM and a low detection limit of 5 microM were achieved for the detection of glucose.  相似文献   

11.
Urate oxidase (E.C.1.7.3.3; uricase, urate oxygen oxidoreductase) is an enzyme of the purine breakdown pathway that catalyzes the oxidation of uric acid in the presence of oxygen to allantoin and hydrogen peroxide. A 96-well plate assay measurement of urate oxidase activity based on hydrogen peroxide quantitation was developed. The 96-well plate method included two steps: an incubation step for the urate oxidase reaction followed by a step in which the urate oxidase activity is stopped in the presence of 8-azaxanthine, a competitive inhibitor. Hydrogen peroxide is quantified during the second step by a horseradish peroxidase-dependent system. Under the defined conditions, uric acid, known as a radical scavenger, did not interfere with hydrogen peroxide quantification. The general advantages of such a colorimetric assay performed in microtiter plates, compared to other methods and in particular the classical UV method performed with cuvettes, are easy handling of large amounts of samples at the same time, the possibility of automation, and the need for less material. The method has been applied to the determination of the kinetic parameters of rasburicase, a recombinant therapeutic enzyme.  相似文献   

12.
Detection of the common electrochemical interferents, ascorbic acid and hydrogen peroxide, using a SIRE (Sensors based on Injection of the Recognition Element) technology based biosensor in reverse mode operation is reported. The differential measuring principle employed in the SIRE biosensor during operation in reverse mode is such that the sample is measured first in the presence of enzyme (yielding matrix signal only), and then measured again in the absence of enzyme (yielding signal from matrix+analyte). Subtraction of the signal obtained in the presence of enzyme from the signal obtained in the absence of enzyme gives a specific signal for the analyte only and correlates directly to its concentration in solution. The linear range for the determination of ascorbic acid and hydrogen peroxide was 0-3 mM and 0-2 mM, respectively, with an enzyme concentration of 25 U ascorbate oxidase/ml and 1000 U catalase/ml. The reproducibility was 5% for ascorbic acid (R.S.D. n=15) and 10% for hydrogen peroxide (R.S.D. n=18). The cost per measurement was 0.28 USD for ascorbic acid analysis and 0.0008 USD for hydrogen peroxide analysis. The degradation of ascorbic acid in cereal was followed in real-time, as was the stabilization of low pH on the degradation process.  相似文献   

13.
A sensitive, selective and stable amperometric glucose biosensor employing novel PtPd bimetallic nanoparticles decorated on multi-walled carbon nanotubes (PtPd-MWCNTs) was investigated. PtPd-MWCNTs were prepared by a modified Watanabe method, and characterized by XRD and TEM. The biosensor was constructed by immobilizing the PtPd-MWCNTs catalysts in a Nafion film on a glassy carbon electrode. An inner Na?on film coating was used to eliminate common interferents such as uric acid, ascorbic acid and fructose. Finally, a highly porous surface with an orderly three-dimensional network enzyme layer (CS-GA-GOx) was fabricated by electrodeposition. The resulting biosensor exhibited a good response to glucose with a wide linear range (0.062-14.07 mM) and a low detection limit 0.031 mM. The biosensor also showed a short response time (within 5 s), and a high sensitivity (112 μA mM(-1)cm(-2)). The Michaelis-Menten constant (K(m)) was determined as 3.3 mM. In addition, the biosensor exhibited high reproducibility, good storage stability and satisfactory anti-interference ability. The applicability of the biosensor to actual serum sample analysis was also evaluated.  相似文献   

14.
This paper describes a new system for amperometric determination of dissolved oxygen and its application for the detection of anionic toxic substances, which are known as enzyme inhibitors. This biosensor is based on the co-immobilization of laccase from Trametes versicolor and a redox active layered double hydroxide [Zn-Cr-ABTS] on a glassy carbon electrode. The electrochemical transduction step corresponds to the electrocatalytic reduction of O2 at 0.2V by laccase as catalyst and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as mediator. Such device provides a fast and a sensitive response for dissolved oxygen determination between 6 x 10(-8) and 4 x 10(-6)M and very low detection limits for azide (5.5 nM), fluoride (6.9 nM) and cyanide (6.2 nM).  相似文献   

15.
In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.  相似文献   

16.
A sensitive and selective amperometric glucose biosensor based on platinum microparticles dispersed in nano-fibrous polyaniline (PANI) was investigated. Poly (m-phenylenediamine) (PMPD), which was employed as an anti-interferent barrier and a protective layer to platinum microparticles, was deposited onto platinum-modified PANI in the presence of glucose oxidase. The morphology of PANI, Pt/PANI and PMPD-GOD/Pt/PANI were investigated by scanning electron microscopy. The results show that PANI has a nano-fibrous morphology. The enzyme electrode exhibits excellent response performance to glucose with linear range from 2 x 10(-6) to 12 x 10(-3) M and fast response time within 7s. Due to the selective permeability of PMPD, the enzyme electrode also shows good anti-interference to uric acid and ascorbic acid. The Michaelis-Menten constant km and the maximum current density imax of the enzyme electrode were 9.34 x 10(-3) M and 917.43 microA cm(-2), respectively. Furthermore, this glucose biosensor also has good stability and reproducibility.  相似文献   

17.
This paper describes the development of a modified electrode for the electrocatalytic oxidation of beta-nicotinamide adenine dinucleotide (beta-NADH) and beta-nicotinamide adenine dinucleotide phosphate (beta-NADPH) using electropolymerised 3,4-dihydroxybenzaldehyde (3,4-DHB). Two voltammetric biosensors using enzyme-immobilised membranes were constructed for the determination of formic acid and glucose-6-phosphate (G6P), respectively. The formic acid biosensor based on the combination of formate dehydrogenase (FDH)-modified membrane with 3,4-DHB-coated glassy carbon electrode is one to two orders more sensitive (LOD, 5.0x10(-5) M) than previously reported electrochemical biosensors. Similarly, lower detection limit (4.0x10(-5) M) for the measurement of G6P was achieved using glucose-6-phosphate dehydrogenase (G6PDH) in the presence of beta-NADP(+). The interference of uric acid and ascorbate was minimised by incorporating an additional membrane modified with uricase and ascorbate oxidase, respectively. The biosensing scheme developed in this study can be adopted universally with a number of dehydrogenases for the detection of different substrates.  相似文献   

18.
In this work, an amperometric biosensor based on catalase enzyme was developed for the determination of azide. The principle of the measurements was based on the determination of the decrease in the differentiation of oxygen level which had been caused by the inhibition of catalase in the bioactive layer of the biosensor by azide. Firstly, the optimum conditions for the inhibitor biosensor were established. In the optimization studies of the biosensor, the most suitable catalase and gelatin amounts and glutaraldehyde ratio were determined. Optimum catalase activity, optimum gelatin amount and glutaraldehyde percentage were 5000 Ucm(-2), 5.94 mgcm(-2) and 2.5%, respectively. Characterization studies of the biosensor such as optimum pH and optimum temperature were carried out. The repeatability experiments were done and the average value (x), standard deviation (S.D.) and variation coefficient (C.V.) were calculated as 98.6 microM, +/-4.16 microM and 4.23%, respectively. A good linear relationship with a correlation coefficient of 0.9902 was obtained over the concentration range of 25 microM to 300 microM azide. After the optimization and characterization studies the proposed biosensor was applied to the determination of azide in certain fruit juices.  相似文献   

19.
The amperometric detection of neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) was achieved at a tyrosinase-chitosan composite film-modified glassy carbon (GC) electrode. The optimal conditions for the preparation of the biosensor were established. This bio-composite film was characterized by scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectra, suggesting that chitosan covalently connected to chitosan chains. Electrochemical characterization of the bio-hybrid membrane-covered electrodes were also performed in 0.05 M phosphate buffer solution (pH 6.52) containing neurotransmitters or their derivatives by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and amperometry. This simply-prepared protein-polysaccharide hybrid film provides a microenvironment friendly for enzyme loading. The sensor was operated at -0.15 V with a short response time. The current linearly increased with the increasing concentration of DOPAC over the concentration of 6 nM-0.2 mM. The lower detection limit for DOPAC is 3 nM (S/N=3). The sensitivity of the sensor is 40 microA mM(-1). A physiological level of neurotransmitters and their derivatives including dopamine, l-dopa, adrenaline, noradrenaline and homovanillic acid as well as ascorbic acid, uric acid and acetaminophen do not affect the determination of DOPAC.  相似文献   

20.
Coupled enzyme assays are described for measuring inorganic phosphates, organic phosphates and phosphate-liberating enzymes in biological material. The assays all determine Pi by its reaction with inosine, catalysed by nucleoside phosphorylase; this yields ribose 1-phosphate and hypoxanthine. The hypoxanthine is oxidized to uric acid by xanthine oxidase, and may be measured either by the absorbance of the uric acid, or by the formazan formed when a tetrazolium salt is used as the oxidant. The coupled enzyme assays are characterized by high sensitivity, quantitative utilization of phosphates and stoichiometric formation of the measurable products, measurement at pH 6.0-8.5, determination of phosphates within a single analytical step, and continuous measurement of phosphohydrolase activity in a corresponding rate assay. Examples include determinations of substrates such as Pi, PPi and AMP, and of enzymes such as 5'-nucleotidase, inorganic pyrophosphatase and glucose-6-phosphatase. Directions for further examples are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号