首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Rhodobacter sphaeroides encodes the components of two distinct pathways for salvaging cobinamide (Cbi), a precursor of adenosylcobalamin (AdoCbl, coenzyme B12). One pathway, conserved among bacteria, depends on a bifunctional kinase/guanylyltransferase (CobP) enzyme to convert adenosylcobinamide (AdoCbi) to AdoCbi-phosphate (AdoCbi-P), an intermediate in de novo AdoCbl biosynthesis. The other pathway, of archaeal origin, depends on an AdoCbi amidohydrolase (CbiZ) enzyme to generate adenosylcobyric acid (AdoCby), which is converted to AdoCbi-P by the AdoCbi-P synthetase (CobD) enzyme. Here we report that R. sphaeroides strain 2.4.1 synthesizes AdoCbl de novo and that it salvages Cbi using both of the predicted Cbi salvaging pathways. AdoCbl produced by R. sphaeroides was identified and quantified by high-performance liquid chromatography and bioassay. The deletion of cobB (encoding an essential enzyme of the de novo corrin ring biosynthetic pathway) resulted in a strain of R. sphaeroides that would not grow on acetate in the absence of exogenous corrinoids. The results from a nutritional analysis showed that the presence of either CbiZ or CobP was necessary and sufficient for Cbi salvaging, that CbiZ-dependent Cbi salvaging depended on the presence of CobD, and that CobP-dependent Cbi salvaging occurred in a cbiZ+ strain. Possible reasons why R. sphaeroides maintains two distinct pathways for Cbi salvaging are discussed.Cobamides, such as adenosylcobalamin (AdoCbl, coenzyme B12), are a group of complex cobalt-containing cyclic tetrapyrrole cofactors whose biosynthesis by bacteria and archaea requires substantial genetic information (>25 genes) (reviewed in references 25, 47, and 56). Two pathways for the de novo synthesis of the corrin ring have been described on the basis of the timing of cobalt insertion into the ring. The late cobalt insertion or aerobic pathway has been well studied in Pseudomonas denitrificans (9), while the early cobalt insertion or anaerobic pathway has been best studied in Salmonella enterica serovar Typhimurium LT2 (25). Many organisms, including those that synthesize AdoCbl de novo, salvage incomplete corrinoids (e.g., cobinamide [Cbi]) from their environments and use them as precursors for the synthesis of complete cobamide cofactors. Cbi is not an intermediate of the de novo AdoCbl biosynthesis pathway but can be converted into one by a process known as Cbi salvaging (Fig. (Fig.1)1) (24).Open in a separate windowFIG. 1.Abbreviated view of cobinamide salvaging pathways. Corrin ring-containing intermediates are in bold text. The letter A indicates the de novo corrin ring biosynthesis pathway. Abbreviations: Ado-, adenosyl-; AP, 1-amino-2-propanol; AP-P, 1-amino-2-propanol-phosphate; CobB, hydrogenobyrinic acid a,c-diamide synthase; CobD, adenosylcobinamide-phosphate synthetase; CobP, NTP:adenosylcobinamide kinase, GTP:adenosylcobinamide-phosphate guanylyltransferase; CobY, GTP:adenosylcobinamide-phosphate guanylyltransferase; CbiZ, adenosylcobinamide amidohydrolase. Functional groups are indicated as follows: Me, methyl; Ac, acetamide; and Pr, propionamide.The first step of Cbi salvaging is adenosylation of the molecule to adenosylcobinamide (AdoCbi) (24). The adenosyltransferases which catalyze this reaction are broadly distributed throughout the three domains of life (13, 14, 20, 32, 38). Two distinct pathways for converting AdoCbi into an intermediate of the de novo AdoCbl biosynthesis pathway have been described for prokaryotes. One, which is to date found only in bacteria, relies on a bifunctional nucleoside triphosphate (NTP):AdoCbi kinase (EC 2.7.7.62), GTP:AdoCbi-phosphate (AdoCbi-P) guanylyltransferase (EC 2.7.1.156) enzyme (called CobP in P. denitrificans and CobU in S. Typhimurium), which phosphorylates AdoCbi to AdoCbi-P and converts AdoCbi-P to AdoCbi-GDP (10, 41, 55).Previous work from our laboratory has shown that archaea lack the bifunctional NTP:AdoCbi kinase, GTP:AdoCbi-P guanylyltransferase enzyme and rely on a second pathway for Cbi salvaging (54, 62). In this pathway, AdoCbi is converted to adenosylcobyric acid (AdoCby) by an AdoCbi amidohydrolase (EC 3.5.1.90) known as CbiZ (58, 59, 62). The conversion of AdoCbi-P to AdoCbi-GDP for de novo AdoCbl biosynthesis in archaea is catalyzed by a monofunctional GTP:AdoCbi-P guanylyltransferase (EC 2.7.7.62) called CobY (54, 60), which has not been found in any bacterium.We recently showed that a small percentage of bacterial genomes encode orthologs of both CobP-type and CbiZ-type Cbi salvaging enzymes, raising the question of why these organisms might contain two redundant Cbi salvaging systems (29). A phylogenetic analysis showed that CbiZ has its roots in the archaea and that the cbiZ gene was acquired by several bacterial lineages via horizontal gene transfer.We previously showed that the CbiZ and CobP enzymes from the photosynthetic alphaproteobacterium Rhodobacter sphaeroides are functional in vitro and in vivo in a heterologous complementation system (29). However, the question of how the two Cbi salvaging systems might function in R. sphaeroides remained unresolved.In this paper, we show that R. sphaeroides 2.4.1 synthesizes substantial amounts of cobalamin (Cbl) and that it salvages incomplete corrinoids from its environment. We present in vivo genetic evidence that both the bacterial-type CobP-dependent and archaeal-type CbiZ-dependent Cbi salvaging pathways are functional in this organism. This work represents the first in vivo genetic analysis of coenzyme B12 synthesis and salvaging in R. sphaeroides.  相似文献   

2.
Cobinamide (Cbi) salvaging is impaired, but not abolished, in a Salmonella enterica strain lacking a functional cobU gene. CobU is a bifunctional enzyme (NTP:adenosylcobinamide [NTP:AdoCbi] kinase, GTP:adenosylcobinamide-phosphate [GTP:AdoCbi-P] guanylyltransferase) whose AdoCbi kinase activity is necessary for Cbi salvaging in this bacterium. Inactivation of the ycfN gene in a DeltacobU strain abrogated Cbi salvaging. Introduction of a plasmid carrying the ycfN(+) allele into a DeltacobU DeltaycfN strain substantially restored Cbi salvaging. Mass spectrometry data indicate that when YcfN-enriched cell extracts were incubated with AdoCbi and ATP, the product of the reaction was AdoCbi-P. Results from bioassays confirmed that YcfN converted AdoCbi to AdoCbi-P in an ATP-dependent manner. YcfN is a good example of enzymes that are used by the cell in multiple pathways to ensure the salvaging of valuable precursors.  相似文献   

3.
Here we report the initial biochemical characterization of the bifunctional alpha-ribazole-P (alpha-RP) phosphatase, adenosylcobinamide (AdoCbi) amidohydrolase CbiS enzyme from the hyperthermophilic methanogenic archaeon Methanopyrus kandleri AV19. The cbiS gene encodes a 39-kDa protein with two distinct segments, one of which is homologous to the AdoCbi amidohydrolase (CbiZ, EC 3.5.1.90) enzyme and the other of which is homologous to the recently discovered archaeal alpha-RP phosphatase (CobZ, EC 3.1.3.73) enzyme. CbiS function restored AdoCbi salvaging and alpha-RP phosphatase activity in strains of the bacterium Salmonella enterica where either step was blocked. The two halves of the cbiS genes retained their function in vivo when they were cloned separately. The CbiS enzyme was overproduced in Escherichia coli and was isolated to >95% homogeneity. High-performance liquid chromatography, UV-visible spectroscopy, and mass spectroscopy established alpha-ribazole and cobyric acid as the products of the phosphatase and amidohydrolase reactions, respectively. Reasons why the CbiZ and CobZ enzymes are fused in some archaea are discussed.  相似文献   

4.
Computer analysis of the archaeal genome databases failed to identify orthologues of all of the bacterial cobamide biosynthetic enzymes. Of particular interest was the lack of an orthologue of the bifunctional nucleoside triphosphate (NTP):5'-deoxyadenosylcobinamide kinase/GTP:adenosylcobinamide-phosphate guanylyltransferase enzyme (CobU in Salmonella enterica). This paper reports the identification of an archaeal gene encoding a new nucleotidyltransferase, which is proposed to be the nonorthologous replacement of the S. enterica cobU gene. The gene encoding this nucleotidyltransferase was identified using comparative genome analysis of the sequenced archaeal genomes. Orthologues of the gene encoding this activity are limited at present to members of the domain Archaea. The corresponding ORF open reading frame from Methanobacterium thermoautotrophicum Delta H (MTH1152; referred to as cobY) was amplified and cloned, and the CobY protein was expressed and purified from Escherichia coli as a hexahistidine-tagged fusion protein. This enzyme had GTP:adenosylcobinamide-phosphate guanylyltransferase activity but did not have the NTP:AdoCbi kinase activity associated with the CobU enzyme of S. enterica. NTP:adenosylcobinamide kinase activity was not detected in M. thermoautotrophicum Delta H cell extract, suggesting that this organism may not have this activity. The cobY gene complemented a cobU mutant of S. enterica grown under anaerobic conditions where growth of the cell depended on de novo adenosylcobalamin biosynthesis. cobY, however, failed to restore adenosylcobalamin biosynthesis in cobU mutants grown under aerobic conditions where de novo synthesis of this coenzyme was blocked, and growth of the cell depended on the assimilation of exogenous cobinamide. These data strongly support the proposal that the relevant cobinamide intermediates during de novo adenosylcobalamin biosynthesis are adenosylcobinamide-phosphate and adenosylcobinamide-GDP, not adenosylcobinamide. Therefore, NTP:adenosylcobinamide kinase activity is not required for de novo cobamide biosynthesis.  相似文献   

5.
The ability of archaea to salvage cobinamide has been under question because archaeal genomes lack orthologs to the bacterial nucleoside triphosphate:5'-deoxycobinamide kinase enzyme (cobU in Salmonella enterica). The latter activity is required for cobinamide salvaging in bacteria. This paper reports evidence that archaea salvage cobinamide from the environment by using a pathway different from the one used by bacteria. These studies demanded the functional characterization of two genes whose putative function had been annotated based solely on their homology to the bacterial genes encoding adenosylcobyric acid and adenosylcobinamide-phosphate synthases (cbiP and cbiB, respectively) of S. enterica. A cbiP mutant strain of the archaeon Halobacterium sp. strain NRC-1 was auxotrophic for adenosylcobyric acid, a known intermediate of the de novo cobamide biosynthesis pathway, but efficiently salvaged cobinamide from the environment, suggesting the existence of a salvaging pathway in this archaeon. A cbiB mutant strain of Halobacterium was auxotrophic for adenosylcobinamide-GDP, a known de novo intermediate, and did not salvage cobinamide. The results of the nutritional analyses of the cbiP and cbiB mutants suggested that the entry point for cobinamide salvaging is adenosylcobyric acid. The data are consistent with a salvaging pathway for cobinamide in which an amidohydrolase enzyme cleaves off the aminopropanol moiety of adenosylcobinamide to yield adenosylcobyric acid, which is converted by the adenosylcobinamide-phosphate synthase enzyme to adenosylcobinamide-phosphate, a known intermediate of the de novo biosynthetic pathway. The existence of an adenosylcobinamide amidohydrolase enzyme would explain the lack of an adenosylcobinamide kinase in archaea.  相似文献   

6.
In archaea and bacteria, the late steps in adenosylcobalamin (AdoCbl) biosynthesis are collectively known as the nucleotide loop assembly (NLA) pathway. In the archaeal and bacterial NLA pathways, two different guanylyltransferases catalyze the activation of the corrinoid. Structural and functional studies of the bifunctional bacterial guanylyltransferase that catalyze both ATP-dependent corrinoid phosphorylation and GTP-dependent guanylylation are available, but similar studies of the monofunctional archaeal enzyme that catalyzes only GTP-dependent guanylylation are not. Herein, the three-dimensional crystal structure of the guanylyltransferase (CobY) enzyme from the archaeon Methanocaldococcus jannaschii (MjCobY) in complex with GTP is reported. The model identifies the location of the active site. An extensive mutational analysis was performed, and the functionality of the variant proteins was assessed in vivo and in vitro. Substitutions of residues Gly8, Gly153, or Asn177 resulted in ≥94% loss of catalytic activity; thus, variant proteins failed to support AdoCbl synthesis in vivo. Results from isothermal titration calorimetry experiments showed that MjCobY(G153D) had 10-fold higher affinity for GTP than MjCobY(WT) but failed to bind the corrinoid substrate. Results from Western blot analyses suggested that the above-mentioned substitutions render the protein unstable and prone to degradation; possible explanations for the observed instability of the variants are discussed within the framework of the three-dimensional crystal structure of MjCobY(G153D) in complex with GTP. The fold of MjCobY is strikingly similar to that of the N-terminal domain of Mycobacterium tuberculosis GlmU (MtbGlmU), a bifunctional acetyltransferase/uridyltransferase that catalyzes the formation of uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc).  相似文献   

7.

Background  

Archaea share with bacteria the ability to bias their movement towards more favorable locations, a process known as taxis. Two molecular systems drive this process: the motility apparatus and the chemotaxis signal transduction system. The first consists of the flagellum, the flagellar motor, and its switch, which allows cells to reverse the rotation of flagella. The second targets the flagellar motor switch in order to modulate the switching frequency in response to external stimuli. While the signal transduction system is conserved throughout archaea and bacteria, the archaeal flagellar apparatus is different from the bacterial one. The proteins constituting the flagellar motor and its switch in archaea have not yet been identified, and the connection between the bacterial-like chemotaxis signal transduction system and the archaeal motility apparatus is unknown.  相似文献   

8.
In all three domains of life, extracytoplasmic proteins must overcome the hurdle presented by hydrophobic, lipid-based membranes. While numerous aspects of the protein translocation process have been well studied in bacteria and eukarya, little is known about how proteins cross the membranes of archaea. Analysis to date suggests that archael protein translocation is a mosaic of bacterial, eukaryal, and archaeal features, as indeed is much of archaeal biology. Archaea encode homologues of selected elements of the bacterial and eukaryal translocation machines, yet lack other important components of these two systems. Other aspects of the archaeal translocation process appear specific to this domain, possibly related to the extreme environmental conditions in which archsea thrive. In the following, current understanding of archaeal protein translocation is reviewed, as is recent progress in reconstitution of the archaeal translocation process in vitro.  相似文献   

9.
Bioenergetics of the Archaea   总被引:4,自引:1,他引:3       下载免费PDF全文
In the late 1970s, on the basis of rRNA phylogeny, Archaea (archaebacteria) was identified as a distinct domain of life besides Bacteria (eubacteria) and Eucarya. Though forming a separate domain, archaea display an enormous diversity of lifestyles and metabolic capabilities. Many archaeal species are adapted to extreme environments with respect to salinity, temperatures around the boiling point of water, and/or extremely alkaline or acidic pH. This has posed the challenge of studying the molecular and mechanistic bases on which these organisms can cope with such adverse conditions. This review considers our cumulative knowledge on archaeal mechanisms of primary energy conservation, in relationship to those of bacteria and eucarya. Although the universal principle of chemiosmotic energy conservation also holds for Archaea, distinct features have been discovered with respect to novel ion-transducing, membrane-residing protein complexes and the use of novel cofactors in bioenergetics of methanogenesis. From aerobically respiring archaea, unusual electron-transporting supercomplexes could be isolated and functionally resolved, and a proposal on the organization of archaeal electron transport chains has been presented. The unique functions of archaeal rhodopsins as sensory systems and as proton or chloride pumps have been elucidated on the basis of recent structural information on the atomic scale. Whereas components of methanogenesis and of phototrophic energy transduction in halobacteria appear to be unique to archaea, respiratory complexes and the ATP synthase exhibit some chimeric features with respect to their evolutionary origin. Nevertheless, archaeal ATP synthases are to be considered distinct members of this family of secondary energy transducers. A major challenge to future investigations is the development of archaeal genetic transformation systems, in order to gain access to the regulation of bioenergetic systems and to overproducers of archaeal membrane proteins as a prerequisite for their crystallization.  相似文献   

10.
Insertion sequences (ISs) can constitute an important component of prokaryotic (bacterial and archaeal) genomes. Over 1,500 individual ISs are included at present in the ISfinder database (www-is.biotoul.fr), and these represent only a small portion of those in the available prokaryotic genome sequences and those that are being discovered in ongoing sequencing projects. In spite of this diversity, the transposition mechanisms of only a few of these ubiquitous mobile genetic elements are known, and these are all restricted to those present in bacteria. This review presents an overview of ISs within the archaeal kingdom. We first provide a general historical summary of the known properties and behaviors of archaeal ISs. We then consider how transposition might be regulated in some cases by small antisense RNAs and by termination codon readthrough. This is followed by an extensive analysis of the IS content in the sequenced archaeal genomes present in the public databases as of June 2006, which provides an overview of their distribution among the major archaeal classes and species. We show that the diversity of archaeal ISs is very great and comparable to that of bacteria. We compare archaeal ISs to known bacterial ISs and find that most are clearly members of families first described for bacteria. Several cases of lateral gene transfer between bacteria and archaea are clearly documented, notably for methanogenic archaea. However, several archaeal ISs do not have bacterial equivalents but can be grouped into Archaea-specific groups or families. In addition to ISs, we identify and list nonautonomous IS-derived elements, such as miniature inverted-repeat transposable elements. Finally, we present a possible scenario for the evolutionary history of ISs in the Archaea.  相似文献   

11.
Archaea are microorganisms that are distinct from bacteria and eukaryotes. They are prevalent in extreme environments, and yet found in most ecosystems. They are a natural component of the microbiota of most, if not all, humans and other animals. Despite their ubiquity and close association with humans, animals and plants, no pathogenic archaea have been identified. Because no archaeal pathogens have yet been identified, there is a general assumption that archaeal pathogens do not exist. This review examines whether this is a good assumption by investigating the potential for archaea to be or become pathogens. This is achieved by addressing: the diversity of archaea versus known pathogens, opportunities for archaea to demonstrate pathogenicity and be detected as pathogens, reports linking archaea with disease, and immune responses to archaea. In addition, molecular and genomic data are examined for the presence of systems utilised in pathogenesis. The view of this report is that, although archaea can presently be described as non-pathogenic, they have the potential to be (discovered as) pathogens. The present optimistic view that there are no archaeal pathogens is tainted by a severe lack of relevant knowledge, which may have important consequences in the future.  相似文献   

12.
In the Kongsfjorden–Krossfjorden system (Spitsbergen), increasing temperatures enhance glacier melting and concomitant intrusion of freshwater. These altered conditions affect the timing, intensity, and composition of the phytoplankton spring bloom in Kongsfjorden; yet, the effects on prokaryotes (bacteria and archaea) are not well understood. The aim of this study was to examine springtime prokaryote communities in both fjords as a function of hydrographic and phytoplankton variability. Prokaryote community composition was studied in two consecutive years by molecular fingerprinting of the 16S rRNA gene. In addition, we measured bacterial abundance, productivity (3H-Leucine uptake), and single-cell activity using catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Differences in bacterial and archaeal communities were found between Kongsfjorden and Krossfjorden. Furthermore, an increase in productivity, abundance, and proportion of active bacterial cells was observed during the course of spring. Bacteroidetes were the most abundant bacterial group among the assessed taxa in both Kongsfjorden and Krossfjorden. Multivariate analysis of the microbial community fingerprints revealed a strong temporal shaping of both the bacterial and archaeal communities in addition to a spatial separation between the two fjords. A significant part of the observed bacterial variation could be explained by cyanobacterial biomass, as deduced from pigment analysis, and by phosphate concentration. Archaea were mainly controlled by abiotic factors. We speculate that the bacterial response to hydrographic changes and glacier meltwater is mediated through shifts in phytoplankton abundance and composition, whereas archaea are directly influenced by abiotic environmental variables.  相似文献   

13.
The oxidation of methane in anoxic marine sediments is thought to be mediated by a consortium of methane-consuming archaea and sulfate-reducing bacteria. In this study, we compared results of rRNA gene (rDNA) surveys and lipid analyses of archaea and bacteria associated with methane seep sediments from several different sites on the Californian continental margin. Two distinct archaeal lineages (ANME-1 and ANME-2), peripherally related to the order Methanosarcinales, were consistently associated with methane seep marine sediments. The same sediments contained abundant (13)C-depleted archaeal lipids, indicating that one or both of these archaeal groups are members of anaerobic methane-oxidizing consortia. (13)C-depleted lipids and the signature 16S rDNAs for these archaeal groups were absent in nearby control sediments. Concurrent surveys of bacterial rDNAs revealed a predominance of delta-proteobacteria, in particular, close relatives of Desulfosarcina variabilis. Biomarker analyses of the same sediments showed bacterial fatty acids with strong (13)C depletion that are likely products of these sulfate-reducing bacteria. Consistent with these observations, whole-cell fluorescent in situ hybridization revealed aggregations of ANME-2 archaea and sulfate-reducing Desulfosarcina and Desulfococcus species. Additionally, the presence of abundant (13)C-depleted ether lipids, presumed to be of bacterial origin but unrelated to ether lipids of members of the order Desulfosarcinales, suggests the participation of additional bacterial groups in the methane-oxidizing process. Although the Desulfosarcinales and ANME-2 consortia appear to participate in the anaerobic oxidation of methane in marine sediments, our data suggest that other bacteria and archaea are also involved in methane oxidation in these environments.  相似文献   

14.
Proper cell function relies on correct protein localization. As a first step in the delivery of extracytoplasmic proteins to their ultimate destinations, the hydrophobic barrier presented by lipid-based membranes must be overcome. In contrast to the well-defined bacterial and eukaryotic protein translocation systems, little is known about how proteins cross the membranes of archaea, the third and most recently described domain of life. In bacteria and eukaryotes, protein translocation occurs at proteinaceous sites comprised of evolutionarily conserved core components acting in concert with other, domain-specific elements. Examination of available archaeal genomes as well as cloning of individual genes from other archaeal strains reveals the presence of homologues to selected elements of the bacterial or eukaryotic translocation machines. Archaeal genomic searches, however, also reveal an apparent absence of other, important components of these two systems. Archaeal translocation may therefore represent a hybrid of the bacterial and eukaryotic models yet may also rely on components or themes particular to this domain of life. Indeed, considering the unique chemical composition of the archaeal membrane as well as the extreme conditions in which archaea thrive, the involvement of archaeal-specific translocation elements could be expected. Thus, understanding archaeal protein translocation could reveal the universal nature of certain features of protein translocation which, in some cases, may not be readily obvious from current comparisons of bacterial and eukaryotic systems. Alternatively, elucidation of archaeal translocation could uncover facets of the translocation process either not yet identified in bacteria or eukaryotes, or which are unique to archaea. In the following, the current status of our understanding of protein translocation in archaea is reviewed.  相似文献   

15.
Archaea are ubiquitous in forest soils, but little is known about the factors regulating their abundance and distribution. Low molecular weight organic compounds represent an important energy source for archaea in marine environments, and it is reasonable to suspect that archaeal abundance is dependent on such compounds in soils as well, represented by, for example, plant and fungal exudates. To test this hypothesis, we designed a microcosm experiment in which we grew ponderosa pine, sitka spruce, and western hemlock in forest soil. Root and mycorrhizal exudation rates were estimated in a 13C pulse-chase experiment, and the number of archaeal and bacterial 16S rRNA genes was determined by qPCR. Archaeal abundance differed among plant species, and the number of archaeal 16S rRNA genes was generally lower in soil receiving high concentration of exudates. The mycorrhizal fungi of ponderosa pine seemed to favor archaea, while no such effect was found for mycorrhized sitka spruce or western hemlock. The low abundance of archaea in the proximity of roots and mycorrhiza may be a result of slow growth rates and poor competitive ability of archaea vs. bacteria and does not necessarily reflect a lack of heterotrophic abilities of the archaeal community.  相似文献   

16.
Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.  相似文献   

17.
Motility is a common behaviour in prokaryotes. Both bacteria and archaea use flagella for swimming motility, but it has been well documented that structures of the flagellum from these two domains of life are completely different, although they contribute to a similar function. Interestingly, information available to date has revealed that structurally archaeal flagella are more similar to bacterial type?IV pili rather than to bacterial flagella. With the increasing genome sequence information and advancement in genetic tools for archaea, identification of the components involved in the assembly of the archaeal flagellum is possible. A subset of these components shows similarities to components from type?IV pilus-assembly systems. Whereas the molecular players involved in assembly of the archaeal flagellum are being identified, the mechanics and dynamics of the assembly of the archaeal flagellum have yet to be established. Recent computational analysis in our laboratory has identified conserved highly charged loop regions within one of the core proteins of the flagellum, the membrane integral protein FlaJ, and predicted that these are involved in the interaction with the assembly ATPase FlaI. Interestingly, considerable variation was found among the loops of FlaJ from the two major subkingdoms of archaea, the Euryarchaeota and the Crenarchaeota. Understanding the assembly pathway and creating an interaction map of the molecular players in the archaeal flagellum will shed light on the details of the assembly and also the evolutionary relationship to the bacterial type?IV pili-assembly systems.  相似文献   

18.
Comparative genomics has revealed that variations in bacterial and archaeal genome DNA sequences cannot be explained by only neutral mutations. Virus resistance and plasmid distribution systems have resulted in changes in bacterial and archaeal genome sequences during evolution. The restriction-modification system, a virus resistance system, leads to avoidance of palindromic DNA sequences in genomes. Clustered, regularly interspaced, short palindromic repeats (CRISPRs) found in genomes represent yet another virus resistance system. Comparative genomics has shown that bacteria and archaea have failed to gain any DNA with GC content higher than the GC content of their chromosomes. Thus, horizontally transferred DNA regions have lower GC content than the host chromosomal DNA does. Some nucleoid-associated proteins bind DNA regions with low GC content and inhibit the expression of genes contained in those regions. This form of gene repression is another type of virus resistance system. On the other hand, bacteria and archaea have used plasmids to gain additional genes. Virus resistance systems influence plasmid distribution. Interestingly, the restriction-modification system and nucleoid-associated protein genes have been distributed via plasmids. Thus, GC content and genomic signatures do not reflect bacterial and archaeal evolutionary relationships.  相似文献   

19.
At first glance, archaea and bacteria look alike; however, the composition of the archaeal cell envelope is fundamentally different from the bacterial cell envelope. With just one exception, all archaea characterized to date have only a single membrane and most are covered by a paracrystalline protein layer. This Review discusses our current knowledge of the composition of the archaeal cell surface. We describe the wide range of cell wall polymers, O- and N-glycosylated extracellular proteins and other cell surface structures that archaea use to interact with their environment.  相似文献   

20.
The enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase or HMGR) fulfills an essential role in archaea, as it is required for the synthesis of isoprenoid ethers, the main component of archaeal cell membranes. There are two clearly homologous but structurally different classes of the enzyme, one found mainly in eukaryotes and archaea (class 1), and the other found in bacteria (class 2). This feature facilitated the identification of several cases of interdomain lateral gene transfer (LGT), in particular, the bacterial origin for the HMGR gene from the archaeon Archaeoglobus fulgidus. In order to investigate if this LGT event was recent and limited in its scope or had a broad and long-term impact on the recipient and its related lineages, the HMGR gene was amplified and sequenced from a variety of archaea. The survey covered close relatives of A. fulgidus, the only archaeon known prior to this study to possess a bacterial-like HMGR; representatives of each main euryarchaeal group were also inspected. All culturable members of the archaeal group Archaeoglobales were found to display an HMGR very similar to the enzyme of the bacterium Pseudomonas mevalonii. Surprisingly, two species of the genus Thermoplasma also harbor an HMGR of bacterial origin highly similar to the enzymes found in the Archaeoglobales. Phylogenetic analyses of the HMGR gene and comparisons to reference phylogenies from other genes confirm a common bacterial origin for the HMGRs of Thermoplasmatales and Archaeoglobales. The most likely explanation of these results includes an initial bacteria-to-archaea transfer, followed by a another event between archaea. Their presence in two divergent archaeal lineages suggests an important adaptive role for these laterally transferred genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号