首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.  相似文献   

4.
Myotilin is a 57 kDa actin-binding and -bundling protein that consists of a unique serine-rich amino-terminus, two Ig-domains and a short carboxy-terminus with a PDZ-binding motif. Myotilin localizes in sarcomeric Z-discs, where it interacts with several sarcomeric proteins. Point mutations in myotilin cause muscle disorders morphologically highlighted by sarcomeric disarray and aggregation. The actin-binding and dimerization propensity of myotilin has been mapped to the Ig-domains. Here we present high-resolution structure of the first Ig-domain of myotilin (MyoIg1) determined with solution state NMR spectroscopy. Nearly complete chemical shift assignments of MyoIg1 were achieved despite several missing backbone 1H-15N-HSQC signals. The structure derived from distance and dihedral angle restraints using torsion angle dynamics was further refined using molecular dynamics. The structure of MyoIg1 exhibits I-type Ig-fold. The absence of several backbone 1H-15N-HSQC signals can be explained by conformational exchange taking place at the hydrophobic core of the protein. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
The structure of the C-terminal antifreeze-like (AFL) domain of human sialic acid synthase was determined by NMR spectroscopy. The structure comprises one alpha- and two single-turn 3(10)-helices and two beta-strands, and is similar to those of the type III antifreeze proteins. Evolutionary trace analyses of the type III antifreeze protein family suggested that the class-specific residues in the human and bacterial AFL domains are important for their substrate binding, while the class-specific residues of the fish antifreeze proteins are gathered on the ice-binding surface.  相似文献   

6.
7.
溴结构域和超末端结构域(bromodomain and extraterminal domain, Bet)家族是表观基因组的调节因子,也是肿瘤细胞生存所依赖的肿瘤相关基因表达的关键驱动因子。溴结构域蛋白4 (bromodomain-containing protein 4, Brd4)是溴域和端外蛋白家族中的一员,通常识别乙酰化组蛋白,并定位于目的基因的启动子或增强子区域,启动并维持肿瘤相关基因的表达。Brd4与多种转录因子调控和染色质修饰密切相关,并参与DNA损伤修复、维持端粒功能,从而维持肿瘤细胞的存活。本文围绕Brd4蛋白的结构、功能及其抑制剂在肿瘤研究中的应用进行综述。  相似文献   

8.
The double-stranded telomeric repeat-binding protein (TRP) AtTRP1 is isolated from Arabidopsis thaliana. Using gel retardation assays, we defined the C-terminal 97 amino acid residues, Gln464 to Val560 (AtTRP1(464-560)), as the minimal structured telomeric repeat-binding domain. This region contains a typical Myb DNA-binding motif and a C-terminal extension of 40 amino acid residues. The monomeric AtTRP1(464-560) binds to a 13-mer DNA duplex containing a single repeat of an A.thaliana telomeric DNA sequence (GGTTTAG) in a 1:1 complex, with a K(D) approximately 10(-6)-10(-7) M. Nuclear magnetic resonance (NMR) examination revealed that the solution structure of AtTRP1(464-560) is a novel four-helix tetrahedron rather than the three-helix bundle structure found in typical Myb motifs and other TRPs. Binding of the 13-mer DNA duplex to AtTRP1(464-560) induced significant chemical shift perturbations of protein amide resonances, which suggests that helix 3 (H3) and the flexible loop connecting H3 and H4 are essential for telomeric DNA sequence recognition. Furthermore, similar to that in hTRF1, the N-terminal arm likely contributes to or stabilizes DNA binding. Sequence comparisons suggested that the four-helix structure and the involvement of the loop residues in DNA binding may be features unique to plant TRPs.  相似文献   

9.
10.
In gastrointestinal stromal tumours (GISTs), the function of bromodomain‐containing 4 (BRD4) remains underexplored. BRD4 mRNA abundance was quantified in GISTs. In the current study, we investigated the role of BRD4 in GISTs. Our results show a significant enhancement in BRD4 mRNA and a shift from very low‐risk/low‐risk to high‐risk levels as per NCCN specifications. Overexpression of BRD4 correlated with unfavourable genotype, nongastric location, enhanced risk and decreased disease‐free survival, which were predicted independently. Knockout of BRD4 in vitro suppressed KIT expression, which led to inactivation of the KIT/PI3K/AKT/mTOR pathway, impeded migration and cell growth and made the resistant GIST cells sensitive to imatinib. The expression of KIT was repressed by a BRD4 inhibitor JQ1, which also induced myristoylated‐AKT‐suppressible caspases 3 and 9 activities, induced LC3‐II, exhibited dose‐dependent therapeutic synergy with imatinib and attenuated the activation of the PI3K/AKT/mTOR pathway. In comparison with their single therapy, the combination of JQ1/imatinib more efficiently suppressed the growth of xenografts and exhibited a reduction in KIT phosphorylation, a decrease in Ki‐67 and in the levels of phosphorylated PI3K/AKT/mTOR and enhanced TUNEL staining. Thus, we characterized the biological, prognostic and therapeutic implications of overexpressed BRD4 in GIST and observed that JQ1 suppresses KIT transactivation and nullifies the activation of PI3K/AKT/mTOR, providing a potential strategy for treating imatinib‐resistant GIST through dual blockade of KIT and BRD4.  相似文献   

11.
12.
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.  相似文献   

13.
14.
Domains are basic evolutionary units of proteins and most proteins have more than one domain. Advances in domain modeling and collection are making it possible to annotate a large fraction of known protein sequences by a linear ordering of their domains, yielding their architecture. Protein domain architectures link evolutionarily related proteins and underscore their shared functions. Here, we attempt to better understand this association by identifying the evolutionary pathways by which extant architectures may have evolved. We propose a model of evolution in which architectures arise through rearrangements of inferred precursor architectures and acquisition of new domains. These pathways are ranked using a parsimony principle, whereby scenarios requiring the fewest number of independent recombination events, namely fission and fusion operations, are assumed to be more likely. Using a data set of domain architectures present in 159 proteomes that represent all three major branches of the tree of life allows us to estimate the history of over 85% of all architectures in the sequence database. We find that the distribution of rearrangement classes is robust with respect to alternative parsimony rules for inferring the presence of precursor architectures in ancestral species. Analyzing the most parsimonious pathways, we find 87% of architectures to gain complexity over time through simple changes, among which fusion events account for 5.6 times as many architectures as fission. Our results may be used to compute domain architecture similarities, for example, based on the number of historical recombination events separating them. Domain architecture "neighbors" identified in this way may lead to new insights about the evolution of protein function.  相似文献   

15.
The GLUT4-regulating protein, TUG, functions to retain GLUT4-containing membrane vesicles intracellularly and, in response to insulin stimulation, releases these vesicles to the cellular exocytic machinery for translocation to the plasma membrane. As part of our on going effort to describe the molecular basis for TUG function, we have determined the tertiary structure and characterized the backbone dynamics for an N-terminal ubiquitin-like domain (TUG-UBL1) using NMR spectroscopy. A well-ordered conformation is observed for residues 10-83 of full-length TUG, and confirms a beta-grasp or ubiquitin-like topology. Although not required for in vitro association with GLUT4, the functional role of the TUG-UBL1 domain has not yet been described. We undertook a limited literature review of similar N-terminal UBL domains and noted that a majority participate in protein-protein interactions, generally functioning as adaptor modules to physically associate the over all activity of the protein with a specific cellular process, such as the ubiquitin-proteasome pathway. In consistent fashion, TUG-UBL1 is not expected to participate in a covalent protein modification reaction as it lacks the characteristic C-terminal diglycine ("GG") motif required for conjugation to an acceptor lysine, and also lacks the three most common acceptor lysine residues involved in polyubiquitination. Additionally, analysis of the TUG-UBL1 molecular surface reveals a lack of conservation of the "Ile-44 hydrophobic face" typically involved in ubiquitin recognition. Instead, we speculate on the possible significance of a concentrated area of negative electrostatic potential with increased backbone mobility, both of which are features suggestive of a potential protein-protein interaction site.  相似文献   

16.
17.
18.
19.
20.
We report the solution structure of the DNA binding domain of the Escherichia coli regulatory protein AraC determined in the absence of DNA. The 20 lowest energy structures, determined on the basis of 1507 unambiguous nuclear Overhauser restraints and 180 angle restraints, are well resolved with a pair wise backbone root mean square deviation of 0.7 Å. The protein, free of DNA, is well folded in solution and contains seven helices arranged in two semi‐independent sub domains, each containing one helix‐turn‐helix DNA binding motif, joined by a 19 residue central helix. This solution structure is discussed in the context of extensive biochemical and physiological data on AraC and with respect to the DNA‐bound structures of the MarA and Rob homologs. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号