首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein-disulfide isomerase (PDI) catalyzes the formation and isomerization of disulfides during oxidative protein folding. This process can be error-prone in its early stages, and any incorrect disulfides that form must be rearranged to their native configuration. When the second cysteine (CGHC) in the PDI active site is mutated to Ser, the isomerase activity drops by 7-8-fold, and a covalent intermediate with the substrate accumulates. This led to the proposal that the second active site cysteine provides an escape mechanism, preventing PDI from becoming trapped with substrates that isomerize slowly (Walker, K. W., and Gilbert, H. F. (1997) J. Biol. Chem. 272, 8845-8848). Escape also reduces the substrate, and if it is invoked frequently, disulfide isomerization will involve cycles of reduction and reoxidation in preference to intramolecular isomerization of the PDI-bound substrate. Using a gel-shift assay that adds a polyethylene glycol-conjugated maleimide of 5 kDa for each sulfhydryl group, we find that PDI reduction and oxidation are kinetically competent and essential for isomerization. Oxidants inhibit isomerization and oxidize PDI when a redox buffer is not present to maintain the PDI redox state. Reductants also inhibit isomerization as they deplete oxidized PDI. These rapid cycles of PDI oxidation and reduction suggest that PDI catalyzes isomerization by trial and error, reducing disulfides and oxidizing them in a different configuration. Disulfide reduction-reoxidation may set up critical folding intermediates for intramolecular isomerization, or it may serve as the only isomerization mechanism. In the absence of a redox buffer, these steady-state reduction-oxidation cycles can balance the redox state of PDI and support effective catalysis of disulfide isomerization.  相似文献   

2.
A hallmark of many neurodegenerative diseases is accumulation of misfolded proteins within neurons, leading to cellular dysfunction and cell death. Although several mechanisms have been proposed to link protein misfolding to cellular toxicity, the connection remains enigmatic. Here, we report a cell death pathway involving protein disulfide isomerase (PDI), a protein chaperone that catalyzes isomerization, reduction and oxidation of disulfides. Through a small molecule screening approach, we discovered five structurally distinct compounds that prevent apoptosis induced by mutant huntingtin protein. Using modified Huisgen cycloaddition chemistry, we then identified PDI as the molecular target of these small molecules. Expression of polyglutamine-expanded huntingtin exon 1 in PC12 cells caused PDI to accumulate at mitochondrial-associated ER membranes and trigger apoptotic cell death via mitochondrial outer-membrane permeabilization. Inhibiting PDI in rat brain cells suppressed the toxicity of mutant huntingtin exon 1 and Aβ peptides processed from the amyloid precursor protein. This pro-apoptotic function of PDI represents a new mechanism linking protein misfolding and apoptotic cell death.  相似文献   

3.
Protein disulfide isomerase (PDI) has an essential role in the process of disulfide bond formation, where it catalyzes disulfide bond formation, reduction, and isomerization. It is thought that the major route for oxidizing dithiols in folding proteins to disulfides is via Ero1-mediated oxidation of PDI. Since the discovery of Ero1, the role of glutathione in disulfide bond formation has been downplayed. In this study, the role of glutathione in disulfide bond formation was reexamined. Here we have studied in vitro the kinetics of the glutathione-mediated oxidation and reduction of the catalytic a domains of human PDI and yeast Pdi1p. The results obtained from stopped-flow and quenched-flow experiments show that the reactions of PDI and Pdi1p are faster and more complex than previously thought. Our results suggest that the kinetics of oxidation of PDI and Pdi1p by oxidized glutathione are remarkably similar, whereas the kinetics of reduction by reduced glutathione shows clear differences. The data generated here on the rapid reactivity of PDI towards glutathione suggest that reevaluation is required for several aspects of the field of catalyzed disulfide bond formation, including the potential physiological role of glutathione.  相似文献   

4.
The folding assistant and chaperone protein-disulfide isomerase (PDI) catalyzes disulfide formation, reduction, and isomerization of misfolded proteins. PDI substrates are not restricted to misfolded proteins; PDI catalyzes the dithiothreitol (DTT)-dependent reduction of native ribonuclease A, microbial ribonuclease, and pancreatic trypsin inhibitor, suggesting that an ongoing surveillance by PDI can test even native disulfides for their ability to rearrange. The mechanism of reduction is consistent with an equilibrium unfolding of the substrate, attack by the nucleophilic cysteine of PDI followed by direct attack of DTT on a covalent intermediate between PDI and the substrate. For native proteins, the rate constants for PDI-catalyzed reduction correlate very well with the rate constants for uncatalyzed reduction by DTT. However, the rate is weakly correlated with disulfide stability, surface exposure, or local disorder in the crystal. Compared with native proteins, scrambled ribonuclease is a much better substrate for PDI than predicted from its reactivity with DTT; however, partially reduced bovine pancreatic trypsin inhibitor (des(14-38)) is not. An extensively unfolded polypeptide may be required by PDI to distinguish native from non-native disulfides.  相似文献   

5.
Glutaredoxin (Grx) and protein-disulfide isomerase (PDI) are members of the thioredoxin superfamily of thiol/disulfide exchange catalysts. Thermodynamically, rat PDI is a 600-fold better oxidizing agent than Grx1 from Escherichia coli. Despite that, Grx1 is a surprisingly good protein oxidase. It catalyzes protein disulfide formation in a redox buffer with an initial velocity that is 30-fold faster than PDI. Catalysis of protein and peptide oxidation by the individual catalytic domains of PDI and by a Grx1-PDI chimera show that differences in active site chemistry are fundamental to their oxidase activity. Mutations in the active site cysteines reveal that Grx1 needs only one cysteine to catalyze rapid substrate oxidation, whereas PDI requires both cysteines. Grx1 is a good oxidase because of the high reactivity of a Grx1-glutathione mixed disulfide, and PDI is a good oxidase because of the high reactivity of the disulfide between the two active site cysteines. As a protein disulfide reductase, Grx1 is also superior to PDI. It catalyzes the reduction of nonnative disulfides in scrambled ribonuclease and protein-glutathione mixed disulfides 30-180 times faster than PDI. A multidomain structure is necessary for PDI to catalyze effective protein reduction; however, placing Grx1 into the PDI multidomain structure does not enhance its already high reductase activity. Grx1 and PDI have both found mechanisms to enhance active site reactivity toward proteins, particularly in the kinetically difficult direction: Grx1 by providing a reactive glutathione mixed disulfide to supplement its oxidase activity and PDI by utilizing its multidomain structure to supplement its reductase activity.  相似文献   

6.
Reduction of intramolecular disulfides in the HIV-1 envelope protein gp120 occurs after its binding to the CD4 receptor. Protein disulfide isomerase (PDI) catalyzes the disulfide reduction in vitro and inhibition of this enzyme blocks viral entry. PDI belongs to the thioredoxin protein superfamily that also includes human glutaredoxin-1 (Grx1). Grx1 is secreted from cells and the protein has also been found within the HIV-1 virion. We show that Grx1 efficiently catalyzes gp120, and CD4 disulfide reduction in vitro, even at low plasma levels of glutathione. Grx1 catalyzes the reduction of two disulfide bridges in gp120 in a similar manner as PDI. Purified anti-Grx1 antibodies were shown to inhibit the Grx1 activity in vitro and block HIV-1 replication in cultured peripheral blood mononuclear cells. Also, the polyanion PRO2000, that was previously shown to prevent HIV entry, inhibits the Grx1- and PDI-dependent reduction of gp120 disulfides. Our findings suggest that Grx1 activity is important for HIV-1 entry and that Grx1 and the gp120 intramolecular disulfides are novel pharmacological targets for rational drug development.  相似文献   

7.
Kersteen EA  Barrows SR  Raines RT 《Biochemistry》2005,44(36):12168-12178
Protein disulfide isomerase (PDI) catalyzes the rearrangement of nonnative disulfide bonds in the endoplasmic reticulum of eukaryotic cells, a process that often limits the rate at which polypeptide chains fold into a native protein conformation. The mechanism of the reaction catalyzed by PDI is unclear. In assays involving protein substrates, the reaction appears to involve the complete reduction of some or all of its nonnative disulfide bonds followed by oxidation of the resulting dithiols. The substrates in these assays are, however, heterogeneous, which complicates mechanistic analyses. Here, we report the first analysis of disulfide bond isomerization in a homogeneous substrate. Our substrate is based on tachyplesin I, a 17-mer peptide that folds into a beta hairpin stabilized by two disulfide bonds. We describe the chemical synthesis of a variant of tachyplesin I in which its two disulfide bonds are in a nonnative state and side chains near its N and C terminus contain a fluorescence donor (tryptophan) and acceptor (N(epsilon)-dansyllysine). Fluorescence resonance energy transfer from 280 to 465 nm increases by 28-fold upon isomerization of the disulfide bonds into their native state (which has a lower E(o') = -0.313 V than does PDI). We use this continuous assay to analyze catalysis by wild-type human PDI and a variant in which the C-terminal cysteine residue within each Cys-Gly-His-Cys active site is replaced with alanine. We find that wild-type PDI catalyzes the isomerization of the substrate with kcat/K(M) = 1.7 x 10(5) M(-1) s(-1), which is the largest value yet reported for catalysis of disulfide bond isomerization. The variant, which is a poor catalyst of disulfide bond reduction and dithiol oxidation, retains virtually all of the activity of wild-type PDI in catalysis of disulfide bond isomerization. Thus, the C-terminal cysteine residues play an insignificant role in the isomerization of the disulfide bonds in nonnative tachyplesin I. We conclude that catalysis of disulfide bond isomerization by PDI does not necessarily involve a cycle of substrate reduction/oxidation.  相似文献   

8.
Protein disulfide isomerase (PDI) is an essential protein folding assistant of the eukaryotic endoplasmic reticulum that catalyzes both the formation of disulfides during protein folding (oxidase activity) and the isomerization of disulfides that may form incorrectly (isomerase activity). Catalysis of thiol-disulfide exchange by PDI is required for cell viability in Saccharomyces cerevisiae, but there has been some uncertainty as to whether the essential role of PDI in the cell is oxidase or isomerase. We have studied the ability of PDI constructs with high oxidase activity and very low isomerase activity to complement the chromosomal deletion of PDI1 in S. cerevisiae. A single catalytic domain of yeast PDI (PDIa') has 50% of the oxidase activity but only 5% of the isomerase activity of wild-type PDI in vitro. Titrating the expression of PDI using the inducible/repressible GAL1-10 promoter shows that the amount of wild-type PDI protein needed to sustain a normal growth rate is 60% or more of the amount normally expressed from the PDI1 chromosomal location. A single catalytic domain (PDIa') is needed in molar amounts that are approximately twice as high as those required for wild-type PDI, which contains two catalytic domains. This comparison suggests that high (>60%) PDI oxidase activity is critical to yeast growth and viability, whereas less than 6% of its isomerase activity is needed.  相似文献   

9.
During the maturation of extracellular proteins, disulfide bonds that chemically cross-link specific cysteines are often added to stabilize a protein or to join it covalently to other proteins. Disulfide formation, which requires a change in the covalent structure of the protein, occurs as the protein folds into its three-dimensional structure. In the eukaryotic endoplasmic reticulum and in the bacterial periplasm, an elaborate system of chaperones and folding catalysts ensure that disulfides connect the proper cysteines and that the folding protein does not make improper interactions. This review focuses specifically on one of these folding assistants, protein disulfide isomerase (PDI), an enzyme that catalyzes disulfide formation and isomerization and a chaperone that inhibits aggregation.  相似文献   

10.
This review examines oxidative protein folding within the mammalian endoplasmic reticulum (ER) from an enzymological perspective. In protein disulfide isomerase-first (PDI-first) pathways of oxidative protein folding, PDI is the immediate oxidant of reduced client proteins and then addresses disulfide mispairings in a second isomerization phase. In PDI-second pathways the initial oxidation is PDI-independent. Evidence for the rapid reduction of PDI by reduced glutathione is presented in the context of PDI-first pathways. Strategies and challenges are discussed for determination of the concentrations of reduced and oxidized glutathione and of the ratios of PDIred:PDIox. The preponderance of evidence suggests that the mammalian ER is more reducing than first envisaged. The average redox state of major PDI-family members is largely to almost totally reduced. These observations are consistent with model studies showing that oxidative protein folding proceeds most efficiently at a reducing redox poise consistent with a stoichiometric insertion of disulfides into client proteins. After a discussion of the use of natively encoded fluorescent probes to report the glutathione redox poise of the ER, this review concludes with an elaboration of a complementary strategy to discontinuously survey the redox state of as many redox-active disulfides as can be identified by ratiometric LC–MS–MS methods. Consortia of oxidoreductases that are in redox equilibrium can then be identified and compared to the glutathione redox poise of the ER to gain a more detailed understanding of the factors that influence oxidative protein folding within the secretory compartment.  相似文献   

11.
Disulfide formation in newly synthesized proteins entering the mammalian endoplasmic reticulum is catalyzed by protein disulfide isomerase (PDI), which is itself thought to be directly oxidized by Ero1α. The activity of Ero1α is tightly regulated by the formation of noncatalytic disulfides, which need to be broken to activate the enzyme. Here, we have developed a novel PDI oxidation assay, which is able to simultaneously determine the redox status of the individual active sites of PDI. We have used this assay to confirm that when PDI is incubated with Ero1α, only one of the active sites of PDI becomes directly oxidized with a slow turnover rate. In contrast, a deregulated mutant of Ero1α was able to oxidize both PDI active sites at an equivalent rate to the wild type enzyme. When the active sites of PDI were mutated to decrease their reduction potential, both were now oxidized by wild type Ero1α with a 12-fold increase in activity. These results demonstrate that the specificity of Ero1α toward the active sites of PDI requires the presence of the regulatory disulfides. In addition, the rate of PDI oxidation is limited by the reduction potential of the PDI active site disulfide. The inability of Ero1α to oxidize PDI efficiently likely reflects the requirement for PDI to act as both an oxidase and an isomerase during the formation of native disulfides in proteins entering the secretory pathway.  相似文献   

12.
The formation of disulfide bonds between cysteine residues occurs during the folding of many proteins that enter the secretory pathway. As the polypeptide chain collapses, cysteines brought into proximity can form covalent linkages during a process catalyzed by members of the protein disulfide isomerase family. There are multiple pathways in mammalian cells to ensure disulfides are introduced into proteins. Common requirements for this process include a disulfide exchange protein and a protein oxidase capable of forming disulfides de novo. In addition, any incorrect disulfides formed during the normal folding pathway are removed in a process involving disulfide exchange. The pathway for the reduction of disulfides remains poorly characterized. This work will cover the current knowledge in the field and discuss areas for future investigation.One of the characteristics of proteins that enter the secretory pathway is that they frequently contain covalent linkages called disulfide bonds within and between constituent polypeptide chains. The presence of these linkages is thought to confer stability when secreted proteins are exposed to the extracellular milieu or when membrane proteins are recycled through acidic endocytic compartments. In addition to structural disulfides it is now clear that a number of proteins use the formation and breaking of disulfides as a mechanism for regulation of activity (Schwertassek et al. 2007). Hence, it is important that we have a clear understanding of how correct disulfides are formed within proteins both during the protein folding process and to regulate protein function. The focus of this article will be on how correct disulfides are introduced into proteins within the secretory pathway, specifically within the endoplasmic reticulum (ER) during folding and assembly.The formation of disulfides within polypeptides begins as the protein is being cotranslationally translocated into the ER (Chen et al. 1995). The initial collapse of the polypeptide and formation of secondary structure brings cysteine residues into close enough proximity for them to form disulfides. Correct disulfide formation requires enzymes to both introduce disulfides between proximal cysteines and to reduce disulfides that form during folding but that are not present in the final native structure (Jansens et al. 2002). In addition, proteins that do not fold correctly are targeted for degradation and may require their disulfides to be broken before dislocation across the ER membrane into the cytosol (Ushioda et al. 2008). Hence, there must be a reduction and oxidation pathway present in the ER to ensure that native disulfides form and nonnative disulfides are broken during protein folding.Central to both reduction and oxidation pathways is the protein disulfide isomerase (PDI) family of enzymes (Ellgaard and Ruddock 2005) that are capable of exchanging disulfides with their substrate proteins (Fig. 1). Whether disulfide exchange results in the formation or breaking of a disulfide depends on the relative stability of the disulfides in the enzyme and substrate. To drive the formation of disulfides, the PDI family member must itself be oxidized. It is now clear that there are a number of ways for the disulfide exchange proteins to be oxidized by specific oxidases. Importantly, these oxidases do not introduce disulfides into nascent polypeptide chains; rather, they specifically oxidize members of the PDI family. The exception to this rule is the enzyme quiescin sulfydryl oxidase (QSOX; see below). The pathway for disulfide reduction is not as well characterized. It is known that the PDI family members can be reduced by the low molecular mass thiol glutathione (GSH) (Chakravarthi and Bulleid 2004; Jessop and Bulleid 2004; Molteni et al. 2004) but no enzymatic process for reduction has been identified. The glutathione redox balance within the ER is significantly more oxidized than in the cytosol (Hwang et al. 1992; Dixon et al. 2008), indicating that GSH is actively oxidized to glutathione disulfide either during the reduction of PDI family members or by reducing disulfides in nascent polypeptides directly. However, there is currently no clear indication as to how glutathione disulfide is itself reduced.Open in a separate windowFigure 1.PDI family of enzymes catalyzes disulfide exchange reactions in the endoplasmic reticulum. Nascent polypeptide chains are cotranslationally translocated across the ER membrane whereupon cysteines in close proximity can form disulfides. The reaction is catalyzed by members of the PDI family (depicted as PDI) by a disulfide exchange reaction resulting in the reduction of the PDI active site. If nonnative disulfides are formed these can be reduced by the reverse disulfide exchange reaction, resulting in the oxidation of the PDI active site.Both the formation and breaking of disulfides can be thought of as electron transport pathways that require suitable electron acceptors or donors to drive the flow of electrons. For the purposes of this article the two pathways will be discussed separately, but it should be appreciated that each pathway occurs within the same organelle so the possibility of crossover between them is real. Whether futile redox reactions occur between the pathways is unclear but any kinetic segregation of the pathways will be highlighted where it is known to occur.  相似文献   

13.
The formation of native disulfide bonds is an essential event in the folding and maturation of proteins entering the secretory pathway. For native disulfides to form efficiently an oxidative pathway is required for disulfide bond formation and a reductive pathway is required to ensure isomerization of non-native disulfide bonds. The oxidative pathway involves the oxidation of substrate proteins by PDI, which in turn is oxidized by endoplasmic reticulum oxidase (Ero1). Here we demonstrate that overexpression of Ero1 results in the acceleration of disulfide bond formation and correct protein folding. In contrast, lowering the levels of glutathione within the cell resulted in acceleration of disulfide bond formation but did not lead to correct protein folding. These results demonstrate that lowering the level of glutathione in the cell compromises the reductive pathway and prevents disulfide bond isomerization from occurring efficiently, highlighting the crucial role played by glutathione in native disulfide bond formation within the mammalian endoplasmic reticulum.  相似文献   

14.
Protein disulfide isomerase (PDI) plays a central role in disulfide bond formation in the endoplasmic reticulum. It is implicated both in disulfide bond formation and in disulfide bond reduction and isomerization. To be an efficient catalyst of all three reactions requires complex mechanisms. These include mechanisms to modulate the pKa values of the active-site cysteines of PDI. Here, we examined the role of arginine 120 in modulating the pKa values of these cysteines. We find that arginine 120 plays a significant role in modulating the pKa of the C-terminal active-site cysteine in the a domain of PDI and plays a role in determining the reactivity of the N-terminal active-site cysteine but not via direct modulation of its pKa. Mutation of arginine 120 and the corresponding residue, arginine 461, in the a′ domain severely reduces the ability of PDI to catalyze disulfide bond formation and reduction but enhances the ability to catalyze disulfide bond isomerization due to the formation of more stable PDI-substrate mixed disulfides. These results suggest that the modulation of pKa of the C-terminal active cysteine by the movement of the side chain of these arginine residues into the active-site locales has evolved to allow PDI to efficiently catalyze both oxidation and isomerization reactions.  相似文献   

15.
The sulfhydryl oxidase Ero1 oxidizes protein disulfide isomerase (PDI), which in turn catalyzes disulfide formation in proteins folding in the endoplasmic reticulum (ER). The extent to which other members of the PDI family are oxidized by Ero1 and thus contribute to net disulfide formation in the ER has been an open question. The yeast ER contains four PDI family proteins with at least one potential redox-active cysteine pair. We monitored the direct oxidation of each redox-active site in these proteins by yeast Ero1p in vitro. In this study, we found that the Pdi1p amino-terminal domain was oxidized most rapidly compared with the other oxidoreductase active sites tested, including the Pdi1p carboxyl-terminal domain. This observation is consistent with experiments conducted in yeast cells. In particular, the amino-terminal domain of Pdi1p preferentially formed mixed disulfides with Ero1p in vivo, and we observed synthetic lethality between a temperature-sensitive Ero1p variant and mutant Pdi1p lacking the amino-terminal active-site disulfide. Thus, the amino-terminal domain of yeast Pdi1p is on a preferred pathway for oxidizing the ER thiol pool. Overall, our results provide a rank order for the tendency of yeast ER oxidoreductases to acquire disulfides from Ero1p.  相似文献   

16.
In vitro, protein disulfide isomerase (Pdi1p) introduces disulfides into proteins (oxidase activity) and provides quality control by catalyzing the rearrangement of incorrect disulfides (isomerase activity). Protein disulfide isomerase (PDI) is an essential protein in Saccharomyces cerevisiae, but the contributions of the catalytic activities of PDI to oxidative protein folding in the endoplasmic reticulum (ER) are unclear. Using variants of Pdi1p with impaired oxidase or isomerase activity, we show that isomerase-deficient mutants of PDI support wild-type growth even in a strain in which all of the PDI homologues of the yeast ER have been deleted. Although the oxidase activity of PDI is sufficient for wild-type growth, pulse-chase experiments monitoring the maturation of carboxypeptidase Y reveal that oxidative folding is greatly compromised in mutants that are defective in isomerase activity. Pdi1p and one or more of its ER homologues (Mpd1p, Mpd2p, Eug1p, Eps1p) are required for efficient carboxypeptidase Y maturation. Consistent with its function as a disulfide isomerase in vivo, the active sites of Pdi1p are partially reduced (32 +/- 8%) in vivo. These results suggest that PDI and its ER homologues contribute both oxidase and isomerase activities to the yeast ER. The isomerase activity of PDI can be compromised without affecting growth and viability, implying that yeast proteins that are essential under laboratory conditions may not require efficient disulfide isomerization.  相似文献   

17.
Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus reduction/rearrangement of non-native disulfides is poorly understood. We analyzed the role of individual PDI domains in disulfide bond formation in a reaction driven by their natural oxidant, Ero1p. We found that Ero1p oxidizes the isolated PDI catalytic thioredoxin domains, A and A' at the same rate. In contrast, we found that in the context of full-length PDI, there is an asymmetry in the rate of oxidation of the two active sites. This asymmetry is the result of a dual effect: an enhanced rate of oxidation of the second catalytic (A') domain and the substrate-mediated inhibition of oxidation of the first catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.  相似文献   

18.
Protein-disulfide isomerase (PDI) and sulfhydryl oxidase endoplasmic reticulum oxidoreductin-1α (Ero1α) constitute the pivotal pathway for oxidative protein folding in the mammalian endoplasmic reticulum (ER). Ero1α oxidizes PDI to introduce disulfides into substrates, and PDI can feedback-regulate Ero1α activity. Here, we show the regulatory disulfide of Ero1α responds to the redox fluctuation in ER very sensitively, relying on the availability of redox active PDI. The regulation of Ero1α is rapidly facilitated by either a or a′ catalytic domain of PDI, independent of the substrate binding domain. On the other hand, activated Ero1α specifically binds to PDI via hydrophobic interactions and preferentially catalyzes the oxidation of domain a′. This asymmetry ensures PDI to function simultaneously as an oxidoreductase and an isomerase. In addition, several PDI family members are also characterized to be potent regulators of Ero1α. The novel modes for PDI as a competent regulator and a specific substrate of Ero1α govern efficient and faithful oxidative protein folding and maintain the ER redox homeostasis.  相似文献   

19.
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.  相似文献   

20.
Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4Rα receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI). Reduction of IL-4 disulfides by the cell surface of HeLa cells was inhibited by auranofin, an inhibitor of thioredoxin reductase that is an electron donor to both Trx1 and PDI. Both Trx1 and PDI have been shown to be located at the cell surface and our data suggests that these enzymes are involved in catalyzing reduction of IL-4 disulfides. The pro-drug N-acetylcysteine (NAC) that promotes T-helper type 1 responses was also shown to mediate the reduction of IL-4 disulfides. Our data provides evidence for a novel redox dependent pathway for regulation of cytokine activity by extracellular reduction of intramolecular disulfides at the cell surface by members of the thioredoxin enzyme family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号