首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recurrent inhibition in the mammalian spinal cord is complex, and its functions are not yet well understood. Skeletomotoneurons (-MNs) excite, via recurrent axon collaterals, inhibitory Renshaw cells (RCs), which in turn inhibit -MNs and other neurons. The anatomical and functional structure of the recurrent inhibitory network is nonhomogeneous, and the gain and filtering characteristics of RCs are modulated by inputs circumventing -MNs. This complex organization is likely to play important roles for the discharge and recruitment properties of -MNs. Modeling this system is a way of investigating hypothesized roles for normal functioning including muscle fatigue and different forms of physiological pathological tremor. In this paper, a detailed model including -MNs, RCs, and the muscle fibers innervated by the -MNs is presented. Outlines of the experimental data underlying the model and the modeling philosophy and procedure are presented. Then the behavior of a RC model is compared with experimental data reported in the literature. Model and experimental data agree well for burst responses elicited by synchronous single-pulse activation of different numbers of motor axons. In addition, the static relation between motor-axon activation rate and RC firing rate agree fairly well in model and experiment, and the same applies to the dynamic responses to step changes in motor-axon rate. The ultimate objective is to use this model in probing the role of recurrent inhibition in the control and stability of (isometric) muscular force under normal and altered conditions occurring during fatigue and muscle pain.  相似文献   

2.
The static discharge rate of Renshaw cells (studied in deafferented, intercollicularly decerebrate cats) has a nonlinear dependence on the frequency of trains of stimulus impulses to -motor axons in the ventral root. This dependence is well described by a rectangular hyperbola that approaches saturation with increasing stimulus frequency. The tendency to saturate is independent of the number of motor axons exciting a Renshaw cell. On average, the stimulus frequency at which the discharge rate reaches half its saturation value lies between 10 and 15 Hz. The effect of Renshaw cell activity — measured as the antidromic inhibition of individual -motoneurons — reflects the form of the static frequency characteristics. An electric circuit analog of the Renshaw cell membrane is presented which serves to explain the qualitative features of the static input-output relations; the nonlinearity is the result of synapses with linear properties acting together at the cell membrane.Dedicated to Professor R. Granit, Stockholm, on the occasion of his 80th birthday  相似文献   

3.
Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation. However, muscle architecture and the mechanical properties of surrounding tissues also contribute to the net SRS of a muscle, and it remains unclear how these structural features each contribute to the SRS of a muscle. In this study, the SRS-force characteristics of cat medial gastrocnemius muscle were measured during natural activation using the crossed-extension reflex, which activates slow before fast motor units, and during electrical activation, in which all motor units are activated synchronously. Short, rapid, isovelocity stretches were applied using a linear puller to measure SRS across the range of muscle forces. Data were collected from eight animals. Although there was a trend toward greater stiffness during natural activation, this trend was small and not statistically significant across the population of animals tested. A simple model, in which the slow-twitch fibers were assumed to be 30% stiffer than the fast-twitch fibers, was used to simulate the experimental results. Experimental and simulated results show that motor unit composition or firing rate has little effect on the SRS property of the cat MG muscle, suggesting that architectural features may be the primary determinant of SRS.  相似文献   

4.
5.
Muscle volume and length are important parameters for examining the force-generating capabilities of muscle and their evaluation is necessary in studies that investigate muscle morphology and mechanical changes due to age, function, pathology, surgery and training. In this study, we assessed the validity and reliability of in vivo muscle volume and muscle belly length measurement using a multiple sweeps freehand 3D ultrasound (3DUS). The medial gastrocnemius of 10 subjects was scanned at three ankle joint angles (15°, 0° and ?15° dorsiflexion) three times using the freehand 3DUS and once on the following day using magnetic resonance imaging (MRI). All freehand 3DUS and MRI images were segmented, volumes rendered and volumes and muscle belly lengths measured. The freehand 3DUS overestimated muscle volume by 1.9±9.1 mL, 1.1±3.8% difference and underestimated muscle belly length by 3.0±5.4 mm, 1.3±2.2% difference. The intra-class correlation coefficients (ICC) for repeated freehand 3DUS system measures of muscle volume and muscle belly length were greater than 0.99 and 0.98, respectively. The ICCs for the segmentation process reliability for the freehand 3DUS system and MRI for muscle volume were both greater than 0.99 and muscle belly length were 0.97 and 0.99, respectively. Freehand 3DUS is a valid and reliable method for the measurement of human muscle volume and muscle belly length in vivo. It could be used as an alternative to MRI for measuring in vivo muscle morphology and thus allowing the determination of PCSA and estimation of the force-generating capacity of individual muscles within the setting of a biomechanics laboratory.  相似文献   

6.
7.
The fruit fly, Drosophila melanogaster, is a powerful model genetic organism that has been used since the turn of the previous century in the study of complex biological problems. In the last decade, numerous researchers have focused their attention on understanding neurodegenerative diseases by utilizing this model system. Numerous Drosophila mutants have been isolated that profoundly affect neural viability and integrity of the nervous system with age. Additionally, many transgenic strains have been developed as models of human disease conditions. We review the existing Drosophila neurodegenerative mutants and transgenic disease models, and discuss the role of the fruit fly in therapeutic development for neurodegenerative diseases.  相似文献   

8.
An earlier proposed model of the de-efferented muscle spindle mechano-receptors has been developed further to simulate the effects of the dynamic fusimotor ( D) activation of the group Ia afferents (primary endings).The rate sensitivity of the original second order receptor model might be increased simply by increasing the overall viscous damping of the simulated polar regions of the nuclear bag fibre. However, adequate simulation of the typical time course of the stretch response of the primary endings during D-activation required a subdivision of the polar regions into an active and a passive part. A reasonable behaviour of the model was obtained by simulating a local contraction covering about 50–90% of the polar regions of the nuclear bag fibres.The ramp response of the model showed a quick rate response component that increased by increasing the rate of the simulated stretch. This component was not significantly influenced by the simulated D-activation.A slow rate component appeared to increase approximately in the same proportion as the intensity of the simulated D-activation.The behaviour of the model closely corresponds to that of the biological prototype. The study demonstrates that the electrophysiological effects of activating the dynamic fusimotor fibres are indeed compatible with peripheral mechanical events associated with contraction phenomena within the polar regions of the nuclear bag intrafusal muscle fibres.  相似文献   

9.
Blood recirculating devices, such as ventricular assist devices and prosthetic heart valves, are burdened by thromboembolic complications requiring complex and lifelong anticoagulant therapy with its inherent hemorrhagic risks. Pathologic flow patterns occurring in such devices chronically activate platelets, and the optimization of their thrombogenic performance requires the development of flow-induced platelet activation models. However, existing models are based on empirical correlations using the well-established power law paradigm of constant levels of shear stress during certain exposure times as factors for mechanical platelet activation. These models are limited by their range of application and do not account for other relevant phenomena, such as loading rate dependence and platelet sensitization to high stress conditions, which characterize the dynamic flow conditions in devices. These limitations were addressed by developing a new class of phenomenological stress-induced platelet activation models that specifies the rate of platelet activation as a function of the entire stress history and results in a differential equation that can be directly integrated to calculate the cumulative levels of activation. The proposed model reverts to the power law under constant shear stress conditions and is able to describe experimental results in response to a diverse range of highly dynamic stress conditions found in blood recirculating devices. The model was tested in vitro under emulated device flow conditions and correlates well with experimental results. This new model provides a reliable and robust mathematical tool that can be incorporated into computational fluid dynamic studies in order to optimize design, with the goal of improving the thrombogenic performance of blood recirculating devices.  相似文献   

10.
Griscelli syndrome (GS) is a rare autosomal recessive disorder caused by mutations in either the myosin VA (GS1), RAB27A (GS2) or melanophilin (GS3) genes. The three GS subtypes are commonly characterized by pigment dilution of the skin and hair, due to defects involving melanosome transport in melanocytes. Here, we review how detailed studies concerning GS have contributed to a better understanding of the molecular mechanisms involved in vesicle transport and membrane trafficking processes. Additionally, we demonstrate that the identification and biological analysis of novel disease‐causing mutations highlighted the functional importance of the RAB27A‐MLPH‐MYO5A tripartite complex in intracellular melanosome transport. As the small GTPase Rab27a is able to interact with multiple effectors, including Slp2‐a and Myrip, we report on their presumed role in melanosome transport. Furthermore, we summarize data suggesting that RAB27B and RAB27A are functionally redundant and hereby provide further insight into the pathogenesis of GS2. Finally, we discuss how the gathered knowledge about the RAB27A‐MLPH‐MYO5A tripartite complex can be translated into a possible therapeutic application to reduce (hyper)pigmentation of the skin.  相似文献   

11.
Summary The spike activity of eighth cranial nerve units tonically responsive to head position was recorded in cats anesthetized with pentobarbital sodium, and related with linear accelerations induced by gravity during maintained positions and during dynamic trajectories achieved through rolling around a rostro-caudal axis.The steady-state discharge of 80% of the cells had relatively small coefficients of variation, narrow histograms and periodic autocorrelograms. That of most remaining cells had large coefficients variation, nearly exponential histograms and flat or weakly periodic autocorrelograms.The static relation between head position and discharge showed that each cell had directional sensitivity, i.e. a characteristic change associated with each movement sense. Sixty-six percent of the cells had side-up increases in interval mean and standard deviation, with translation of the histogram to the right and reduction in the average autocorrelogram value: 34% had the opposite relations. Many cells showed multivaluedness, i.e. the interval mean (and other statistics) from different stations at any given position covered a range greater than that at each station. Multivaluedness varied from cell to cell.In the dynamic experiments the discharge was recorded during a continuous motion that involved a single sine wave or a mixture of sinusoids at frequencies up to 0.1 Hz. The spike trains exhibited a continuous mapping of the time varying tilt angle into the instantaneous rate with little or no evidence of multivaluedness. In addition to a tonic part, responses showed a phasic component with the characteristics of a unidirectional rate sensitivity that determined a phase-lead of the response with respect to the stimulus. The relative proportions of tonic and phasic components varied from cell to cell.Based upon anatomical and mechanical considerations (see Appendix) and upon the present results it is suggested that deformations of the trampoline-like membrane occur in a distributed manner. Multivaluedness may be due to forces which, like stiction, prevent complete relaxation of the membrane under static but not under dynamic conditions. The phasic response, whose origin is obscure, argues in favor of the otolithic receptors having a dynamic function, in addition to their role in detecting head positions with respect to gravity.  相似文献   

12.
13.
14.
15.
The use of biplanar videoradiography technology has become increasingly popular for evaluating joint function in vivo. Two fundamentally different methods are currently employed to reconstruct 3D bone motions captured using this technology. Marker-based tracking requires at least three radio-opaque markers to be implanted in the bone of interest. Markerless tracking makes use of algorithms designed to match 3D bone shapes to biplanar videoradiography data. In order to reliably quantify in vivo bone motion, the systematic error of these tracking techniques should be evaluated. Herein, we present new markerless tracking software that makes use of modern GPU technology, describe a versatile method for quantifying the systematic error of a biplanar videoradiography motion capture system using independent gold standard instrumentation, and evaluate the systematic error of the W.M. Keck XROMM Facility's biplanar videoradiography system using both marker-based and markerless tracking algorithms under static and dynamic motion conditions. A polycarbonate flag embedded with 12 radio-opaque markers was used to evaluate the systematic error of the marker-based tracking algorithm. Three human cadaveric bones (distal femur, distal radius, and distal ulna) were used to evaluate the systematic error of the markerless tracking algorithm. The systematic error was evaluated by comparing motions to independent gold standard instrumentation. Static motions were compared to high accuracy linear and rotary stages while dynamic motions were compared to a high accuracy angular displacement transducer. Marker-based tracking was shown to effectively track motion to within 0.1?mm and 0.1 deg under static and dynamic conditions. Furthermore, the presented results indicate that markerless tracking can be used to effectively track rapid bone motions to within 0.15 deg for the distal aspects of the femur, radius, and ulna. Both marker-based and markerless tracking techniques were in excellent agreement with the gold standard instrumentation for both static and dynamic testing protocols. Future research will employ these techniques to quantify in vivo joint motion for high-speed upper and lower extremity impacts such as jumping, landing, and hammering.  相似文献   

16.
We studied the histochemical and in situ contractile changes in a rat ankle extensor, medial gastrocnemius, in which activation of muscle fibres by motoneurones was blocked for 14 days, using the sodium channel blocker tetrodotoxin applied to the sciatic nerve. Muscles were atrophied and showed slower twitch responses, greater fusion at subtetanic frequencies of stimulation, and higher twitch/tetanic ratios. Tetanic force/mm2 of fibre area and fatiguability were unchanged. Type II fibres were more atrophied and showed greater decreases in mitochondrial succinate dehydrogenase activity than type I fibres. The contractile changes resulting from complete disuse do not occur in models in which weight-bearing alone has been removed (space flight, hindlimb suspension), suggesting that the residual motoneurone activity reported in models of weightlessness is sufficient to prevent these responses. Similarly, the finding of a greater type II fibre susceptibility to complete disuse, which differs from the pattern seen in models of weightlessness, suggest that this residual motoneurone activity in the latter influences atrophic responses in a manner that is variable among motor unit types, to produce the reported preferential type I atrophy characteristic of removal of weight-bearing.  相似文献   

17.
Previous research has shown that lactate dehydrogenase (LDH) was competitively inhibited by pentachlorophenol (PCP) and a modified assay produced a detection limit of 1 μM (270 μg l−1). This work used spectrophotometric rate-determination but in order to move towards biosensor development the selected detection method was electrochemical. The linkage of LDH to lactate oxidase (LOD) provided the electroactive species, hydrogen peroxide. This could be monitored using a screen-printed carbon electrode (SPCE) incorporating the mediator, cobalt phthalocyanine, at a potential of +300 mV (vs. Ag/AgCl). A linked LDH/LOD system was optimised with respect to inhibition by PCP. It was found that the SPCE support material, PVC, acted to reduce inhibition, possibly by combining with PCP. A cellulose acetate membrane removed this effect. Inhibition of the system was greatest at enzyme activities of 5 U ml−1 LDH and 0.8 U ml−1 LOD in reactions containing 246 μM pyruvate and 7.5 μM NADPH. PCP detection limits were an EC10 of 800 nM (213 μg l−1) and a minimum inhibition detectable (MID) limit of 650 nM (173 μg l−1). The inclusion of a third enzyme, glucose dehydrogenase (GDH), provided cofactor recycling to enable low concentrations of NADPH to be incorporated within the assay. NADPH was reduced from 7.5 to 2 μM. PCP detection limits were obtained for an assay containing 5 U ml−1 LDH, 0.8 U ml−1 LOD and 0.1 U ml−1 GDH with 246 μM pyruvate, 400 mM glucose and 2 μM NADPH. The EC10 limit was 150 nM (39.9 μg l−1) and the MID was 100 nM (26.6 μg l−1). The design of the inhibition assays discussed has significance as a model for other enzymes and moves forward the possibility of an electrochemical biosensor array for pollution monitoring.  相似文献   

18.
The effects of changing muscle length on the mechanical properties of 89 motor units from adult cat medial gastrocnemius have been studied in eight experiments. Few differences were found between the effects of length on tetanic tension, twitch tension, twitch-tetanus ratio, twitch contraction time, twitch half relaxation time, rate of force development and electrical activity for fast contracting (twitch contraction time less than or equal to 45 msec) and slowly contracting (greater than 45 msec) units. Those differences that did appear did not persist when these two groups were matched by tetanic tension. It is concluded that the biophysical mechanisms responsible for the changes in mechanical and electrical properties with length must be similar for fast and slow twitch units and not related to potential differences in their muscle fiber type. The effects of changing muscle length on the mechanical properties of the eight whole muscles suggest that changes in force output with length are of minor importance during normal movements as the muscle is found to be electrically active over a relatively narrow range of lengths close to the optimum length for tetanus of the whole muscle. The very shortest muscle lengths at which there is only minimal force development are not used in natural movements, while the declining limb of the length tension curve is at muscle lengths beyond the maximum in situ length.  相似文献   

19.
The fern gametophyte is a good model system for studying cell biological, physiological, and photobiological aspects of the fundamental processes of plant development and physiological phenomena, because of its autotrophic characteristics and its simple structure. The cells, moreover, are not surrounded by tissue, so observation and manipulation of the cells are very easy. Here I summarize a part of my knowledge of fern systems, which I have studied for nearly 40 years. Masamitsu Wada is the recipient of the BSJ Research Award for 2004.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号