首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was carried out to assess whether bovine milk whey and its products fermented by lactic acid bacteria could ameliorate the lipid peroxidation of hepatic mitochondria associated with cholestatic liver injury due to bile duct ligation. Rats were maintained on one of five diets for 3 weeks before being operated upon and killed 3 weeks after bile duct ligation. The diets included one deficient in vitamin E (control diet) and others supplemented with either 5% milk whey or 5% milk whey fermented with Bifidobacterium longum (B. longum), Lactobacillus acidophilus (L. acidophilus), and Streptococcus salivarius subsp. thermophillus (S. thermophillus). Bile duct-ligated rats, compared with sham-operated rats, had higher organ weights (liver and spleen), higher serum alkaline phosphatase activity, higher serum bilirubin concentration, and higher content of hepatic mitochondrial lipid hydroperoxide. The rats fed on diets containing milk whey fermented with B. longum ameliorated the elevation of organ weights, enzyme activity, bilirubin concentration, and content of mitochondrial lipid hydroperoxide. Milk whey and milk whey fermented with L. acidophilus and S. thermophillus also suppressed the elevation of mitochondrial lipid hydroperoxide, but had no ameliorating effects on organ weights, enzyme activity, and bilirubin concentration. The elevation of serum lipid hydroperoxide was ameliorated in rats fed on diets containing milk whey and milk whey fermented with B. longum and S. thermophillus. The reduction in plasma α-tocopherol due to bile duct ligation was ameliorated in those rats fed on diets containing milk whey fermented with B. longum as well as by S. themophillus. These results suggest that a milk whey fermented with lactic acid bacteria exerts a beneficial effect on free radical-mediated hepatic injury.  相似文献   

2.
Hydrolysis of whey lactose using CTAB-permeabilized yeast cells   总被引:1,自引:0,他引:1  
Disposal of lactose in whey and whey permeates is one of the most significant problems with regard to economics and environmental impact faced by the dairy industries. The enzymatic hydrolysis of whey lactose to glucose and galactose by β-galactosidase constitutes the basis of the most biotechnological processes currently developed to exploit the sugar content of whey. Keeping this in view, lactose hydrolysis in whey was performed using CTAB permeabilized Kluyveromyces marxianus cells. Permeabilization of K. marxianus cells in relation to β-galactosidase activity was carried out using cetyltrimethyl ammonium bromide (CTAB) to avoid the problem of enzyme extraction. Different process parameters (biomass load, pH, temperature, and incubation time) were optimized to enhance the lactose hydrolysis in whey. Maximum hydrolysis (90.5%) of whey lactose was observed with 200 mg DW yeast biomass after 90 min of incubation period at optimum pH of 6.5 and temperature of 40 °C.  相似文献   

3.
Characterization of three cactus proteins (native and denatured) from Machaerocereus gummosus (Pitahaya agria), Lophocereu schottii (Garambullo), and Cholla opuntia (Cholla), was based on electrophoretic, fluorescence, CD (circular dichroism), DSC (differential scanning calorimetry), and FT-IR (Fourier transform infrared) measurements. The obtained results of intrinsic fluorescence, DSC, and CD were dissimilar for the three species of cactus, providing evidence of differences in secondary and tertiary structures. Cactus proteins may be situated in the following order corresponding to their relative stability: Machaerocereus gummosus (Pitahaya agria) > Cholla opuntia (Cholla) > Lophocereu schottii (Garambullo). Thermodynamic properties of proteins and their changes upon denaturation (temperature of denaturation, enthalphy, and the number of ruptured hydrogen bonds) were correlated with the secondary structure of proteins and disappearance of -helix.  相似文献   

4.
Aims: Adhesion of a micro‐organism to a cell surface is often considered to be the first step in pathogenesis. Inhibiting this process may have therapeutic effects in vivo. This study investigates the inhibitory effects of various bovine whey products on the association of Salm. Typhimurium, E. coli O157:H7 and C. malonaticus (formerly Enterobacter sakazakii) to the human CaCo‐2 cell line. Invasion of CaCo‐2 cells by Salm. Typhimurium and C. malonaticus was also examined. Methods and Results: Infection assays were performed by incubating pathogenic acteria with CaCo‐2 cells in the presence of untreated (UT) or enzyme‐modified (EM) whey products. Associated micro‐organisms were directly quantified by plate counts. Invasion of CaCo‐2 cells by Salm. Typhimurium and C. malonaticus in the presence/absence of test materials was also quantified using gentamicin protection assays. At a concentration of 40 mg ml?1, some UT whey products reduced association and invasion, but this effect was enhanced following hydrolysis with porcine pancreatic lipase. Conclusions: Both UT and EM sweet whey protein concentrates (WPCs) were found to be particularly effective inhibitors of association and invasion. All EM whey products significantly (P < 0·05) inhibited invasion of C. malonaticus into epithelial cells, causing a 2‐log reduction in the quantity of these micro‐organisms internalized. Significance and Impact of the Study: The present study suggests that whey products can inhibit association to and invasion of CaCo‐2 cells by selected micro‐organisms and may be useful in the treatment and/or prevention of foodborne infections.  相似文献   

5.
A new low-cost β-galactosidase (lactase) preparation for whey permeate saccharification was developed and characterized. A biocatalyst with a lactase activity of 10 U/mg, a low transgalactosylase activity and a protein content of 0.22 mg protein/mg was obtained from a fermenter culture of the fungus Penicillium notatum. Factors influencing the enzymatic hydrolysis of lactose, such as reaction time, pH, temperature and enzyme and substrate concentration were standardized to maximize sugar yield from whey permeate. Thus, a 98.1% conversion of 5% lactose in whey permeate to sweet (glucose-galactose) syrup was reached in 48 h using 650 β-galactosidase units/g hydrolyzed substrate. After the immobilization of the acid β-galactosidase from Penicillium notatum on silanized porous glass modified by glutaraldehyde binding, more than 90% of the activity was retained. The marked shifts in the pH value (from 4.0 to 5.0) and optimum temperatures (from 50°C to 60°C) of the solid-phase enzyme were observed and discussed. The immobilized preparation showed high catalytic activity and stability at wider pH and temperature ranges than those of the free enzyme, and under the best operating conditions (lactose, 5%; β-galactosidase, 610–650 U/g lactose; pH 5.0; temperature 55°C), a high efficiency of lactose saccharification (84–88%) in whey permeate was achieved when lactolysis was performed both in a batch process and in a recycling packed-bed bioreactor. It seems that the promising results obtained during the assays performed on a laboratory scale make this immobilizate a new and very viable preparation of β-galactosidase for application in the processing of whey and whey permeates.  相似文献   

6.
Some species of Cactaceae from the Sonoran Desert are characterized by a determinate growth pattern of the primary root, which is important for rapid lateral-root formation and seedling establishment. An analysis of the determinate root growth can be helpful for understanding the mechanism of meristem maintenance in plants in general. Stenocereus gummosus (Engelm.) Gibson & Horak and Pachycereus pringlei (S. Watson) Britton & Rose are characterized by an open type of root apical meristem. Immunohistochemical analysis of 5-bromo-2-deoxyuridine incorporation into S. gummosus showed that the percentage of cells passing through the S-phase in a 24-h period is the same within the zone where a population of relatively slowly proliferating cells could be established and above this zone in the meristem. This indicated the absence of the quiescent center (QC) in S. gummosus. During the second and the third days of growth, in the distal meristem portion of P. pringlei roots, a compact group of cells that had a cell cycle longer than in the proximal meristem was found, indicating the presence of the QC. However, later in development, the QC could not be detected in this species. These data suggest that during post-germination the absence of the establishment of the QC within the apical meristem and limited proliferative activity of initial cells are the main components of a determinate developmental program and that establishment of the QC is required for maintenance of the meristem and indeterminate root growth in plants.Abbreviations QC quiescent center - RCP root cap-protoderm - BrdU 5-bromo-2-deoxyuridine - FITC fluorescein isothiocyanate - DAPI 4,6-diamidino-2-phenylindole  相似文献   

7.
Investigations were conducted into the potential use of enzyme hydrolysed cassava whey for ethanol production by Saccharomyces cerevisiae Aspergillus niger grown on whct bran was used as crude enzyme source to saccharify the whey starch. The whey with an initial HCN concentration of 54.0μg/ml was fermented at pH 4.5 and 30°C in a one-step process to produce ethanol. A maximum ethanol concentration of 4.5% (v/v) was obtained in 120 h with a decrease in HCN level to 4.0 μg/ml. In a two-stage fermentation, in which the raw whey was pre-hydrolysed and under the same fermentation conditions, the unsterilized hydrolysate yielded alcohol content of 5.5% (v/v), while the sterilized hydrolysate gave higher alcohol yield, 7.5% (v/v), in 48 h. No HCN was detected in the fermented liquour at the end of the two-stage process.  相似文献   

8.

Currently, much attention is paid to technologies which can be drivers of the circular economy across different sectors, in particular, to develop technologies for utilization or reusability of biocompatible materials from industrial waste. One of such is the milk whey, which is a cheap biobased raw material, the disposal of which is a major problem for the dairy industry. Our proposed and investigated technology is based on a continuous exploitation of the whey combining microbiology and biotechnology. Primarily, whey was used as a nutrition source for the cultivation of Kluyveromyces lactis with the aim to produce the targeted biocatalyst—lipase. During cultivation, the whey was transformed into the hydrolyzed form, which was further successfully applied as a protein feeder (external linker) for immobilization of lipase by cross-linked enzyme aggregate (CLEA) method. The first time use of whey as a co-feeder for immobilization of enzymes by CLEA method has shown promising results and increased the stability of lipases for temperature and organic solvents. Hydrolysis of rapeseed oil catalyzed with immobilized derivatives was obtained with 45–96% efficiency at non-optimized conditions. Additionally, the determined kinetic parameters indicated that the rate of p-nitrophenyl palmitate hydrolysis was not changed drastically after immobilization.

  相似文献   

9.
Ethanol production by Kluyveromyces fragilis and Saccharomyces cerevisiae was studied using cottage cheese whey in which 80 to 90% of the lactose present had been prehydrolyzed to glucose and galactose. Complete fermentation of the sugar by K. fragilis required 120 hr at 30°C in lactase-hydrolyzed whey compared to 72 hr in nonhydrolyzed whey. This effect was due to a diauxic fermentation pattern in lactase-hydrolyzed whey with glucose being fermented before galactose. Ethanol yields of about 2% were obtained in both types of whey when K. fragilis was the organism used for fermentation. Saccharomyces cerevisiae produced alcohol from glucose more rapidly than K. fragilis, but galactose was fermented only when S. cerevisiae was pregrown on galactose. Slightly lower alcohol yields were obtained with S. cerevisiae, owing to the presence of some lactose in the whey which was not fermented by this organism. Although prehydrolysis of lactose in whey and whey fractions is advantageous in that microbial species unable to ferment lactose may be utilized, diauxie and galactose utilization problems must be considered.  相似文献   

10.
An acid proteinase from Monascus purpureus No. 3403, MpuAP, was previously purified and some characterized in our laboratory (Agric Biol Chem 48:1637–1639, 1984). However, further information about this enzyme is lacking. In this study, we investigated MpuAP’s comprehensive substrate specificity, storage stability, and prospects for reducing antigenicity of whey proteins for application in the food industry. MpuAP hydrolyzed primarily five peptide bonds, Gln4–His5, His10–Leu11, Ala14–Leu15, Gly23–Phe24 and Phe24–Phe25 in the oxidized insulin B-chain. The lyophilized form of the enzyme was well preserved at 30–40°C for 7 days without stabilizers. To investigate the possibility of reducing the antigenicity of the milk whey protein, enzymatic hydrolysates of the whey protein were evaluated by inhibition ELISA. Out of the three main components of whey protein, casein and α-lactalbumin were efficiently degraded by MpuAP. The sequential reaction of MpuAP and trypsin against the whey protein successfully degraded casein, α-lactalbumin and β-lactoglobulin with the highest degree of hydrolysis. As a result, the hydrolysates obtained by using the MpuAP–trypsin combination showed the lowest antigenicity compared with the single application of pepsin, trypsin or pepsin–trypsin combination. Therefore, the overall result suggested that the storage-stable MpuAP and trypsin combination will be a productive approach for making hypoallergic bovine milk whey protein hydrolysates.  相似文献   

11.
Summary A strain ofFusarium moniliforme, previously used for microbial protein production, excreted lactase (-D-galactosidase, EC.3.2.1 23) when cultivated either in a whey liquid medium or on a wheat bran solid medium. The enzyme produced in both media had pH and temperature optima of 4–5 and 50–60°C respectively and was particularly suitable for processing acid whey.In the whey culture, maximum lactase yield was observed after 95 h of growth at 30°C and whey lactose concentration of 9%. The addition of ammonium, potassium and sodium ions to the growth medium considerably enhanced lactase production. A maximum enzyme yield corresponding to hydrolysis of 3 nmoles o-nitrophenyl--D-galactopyranoside sec–1 ml–1 of growth medium, at pH 5 and 60°C, was obtained.In the wheat bran culture, the maximum enzyme yield was obtained after 140 h of growth at 28–30°C. A marked increase in the enzyme production was observed when nitrate or phosphate was added to the growth medium. Also, the addition of certain agricultural by-products (molasses, whey) enhanced lactase production. The observed maximum yield corresponding to the hydrolysis of 182 nmoles of ONPG sec–1 g–1 of wheat bran, at pH 5 and 60°C, is comparable to that reported for certain microorganisms used commercially for lactase production.  相似文献   

12.
The determinate growth of the primary root, its organization and relationship with lateral-root development, and the possible ecological significance of this growth pattern were analyzed in three sympatric species of Cactaceae from the Sonoran Desert, Stenocereus gummosus (Engelm.) Gibson & Horak, S. thurberi (Engelm.) Buxbaum and Ferocactus peninsulae (F.A.C. Weber) Britton & Rose, var. townsendianus (Britton & Rose) N.P. Taylor, stat. nov., Engelm. After seed germination, primary roots of these species commonly grew only for 2–3 d after the start of radicle protrusion (ASRP). This pattern of growth was observed on seedlings growing on filter paper, in vitro under sterile conditions, or in soil. The root-hair zone approached the very tip of the root and meristem exhaustion appeared to be typical in all seedlings of a population in all species. On average, 23 meristematic cells in the epidermal cell file in F. peninsulae were counted during the short steady-state period of growth (12–24 h ASRP). In S. gummosus, the size of the meristem was smaller with the number of epidermal cells in the meristem during the short steady-state growth period (12–36 h ASRP) averaging 13. The dynamics of meristem exhaustion obeyed Ivanov's model of the life span of cells in the meristem that states: if cell division is suppressed, half of the cells present in the meristem at a given time leave the meristem and start elongation during the period equal to the duration of the cell division cycle. It was deduced, on average, three to five cell division cycles in the meristem preceded its exhaustion. The lost meristem integrity can be related to only a few initial cells being found in the radicle. The cessation of meristematic activity in the primary-root apical meristem was directly related to the induction of lateral-root formation. Determinate primary-root growth can be thus viewed as a physiological root-tip decapitation that stops production of a signal inhibiting lateral-root primordia initiation. The time of lateral-root formation in S. gummosus and F. peninsulae was equal to or shorter than in agronomic mezophyte plants. Lateral roots also had determinate growth. The rapidity of root-system development and the ability to stop and to continue growth at any time under unfavorable and favorable conditions suggests the important role of determinate growth in seedling establishment of these Sonoran Desert species. Received: 13 December 1996 / Accepted: 6 January 1997  相似文献   

13.
The fermentation process of acid curd whey using pure cultures of L. bulgaricus and L. acidophilus was investigated. The influence of the starter culture amount on the acidification rate in the fermentation was specified, the biological value of fermented and fermented-ammoniated curd whey was determined, and the ability of fermented whey to prevent the injurious effect of Bac. mesenthericus on the wheat bread quality was examined. Acid curd whey was fermented up to a titratable acidity of 19.8–21.6 g lactic acid/kg whey using L. acidophylus and L. bulgaricus. Mathematical equations were developed on the basis of experimental data to calculate the titratable acidity (A) as a functionof fermentation time (τ) and temperature (t). Fermentation and fermentation-ammoniation processes increase the biological value of whey (the content of the vitamins B1, B2, B6, PP and the free amino acids increase). A new dry fodder BIOLAKTS was developed from fermented curd whey and was recommended for use in veterinary medicine. The fermentation-ammoniation process of curd whey was carried out by adding calculated amounts of non-protein nitrogen NH4OH to increase the total protein equivalent and to achieve mutual proportions of protein and lactose 1:1.4, as in skimmed milk. Fermented-ammoniated curd whey was used to obtain a skimmed milk substitute. A dry flour lactic acid concentrate (FLC) was created as a mixture of high quality wheat flour and evaporated fermented whey in established ratios. As our experiments prove, it can be used as an additive in bread-making to prevent the spoiling of wheat bread by Bac. mesenthericus.  相似文献   

14.
Porcine trypsin (EC 3.4.4.4) converted, within approximately 2 hr at 50°C, its 1000-fold weight of water-insoluble, heat-denaturated cheese whey protein into a water-soluble product. In the course of this digestion, the enzyme increased the α-amino nitrogen of the protein by a factor of >20, from 0.40 to 9.40%. After digesting the water-insoluble whey protein, fully active trypsin could be recovered from the soluble digest with the aid of a cellulose-based affinity adsorbent. The enzyme which was eluted from a column of p-aminobenzamidine, bound to succinylated aminododecylcellulose, was fully active and showed essentially unchanged kinetic properties with a synthetic substrate, L -benzoyl-arginine p-nitroanilide. It was possible to perform, with the same amount of trypsin, three subsequent and equally effective solubilizations of whey protein, followed by a fourth digestion which still yielded a soluble product, but was considerably slower and incomplete. During each digestion, an estimated 30% of the trypsin was lost. The was not due to a decreased efficiency of the affinity adsorbent, as its trypsin-binding capacity was essentially unaffected after over 10 cycles of use.  相似文献   

15.
Limited evidence suggests that dairy whey protein may be the major dairy component that is responsible for health benefits currently associated with increased dairy consumption. Whey proteins may reduce blood pressure and improve cardiovascular health. This study evaluated the effects of whey protein supplementation on blood pressure, vascular function and inflammatory markers compared to casein and glucose (control) supplementation in overweight/obese individuals. The subjects were randomized to either whey protein, casein or glucose supplementation for 12 weeks according to a parallel design. In all, 70 men and women with a mean (±s.e.m.) BMI (kg/m2) of 31.3 ± 0.8 completed the study. Systolic blood pressure (SBP) decreased significantly at week 6 compared to baseline in the whey and casein groups, (P = 0.028 and P = 0.020, respectively) and at week 12 (P = 0.020, and P = 0.017, respectively). Diastolic blood pressure (DBP) decreased significantly compared to baseline in the whey and casein groups (P = 0.038 and P = 0.042, respectively) at week 12. DBP decreased significantly in the whey and casein groups (P = 0.025, P = 0.038, respectively) at week 12 compared to the control group. Augmentation index (AI) was significantly lower from baseline at 12 weeks (P = 0.021) in the whey group. AI decreased significantly in the whey group at 12 weeks compared to control (P = 0.006) and casein (P = 0.006). There were no significant changes in inflammatory markers within or between groups. This study demonstrated that supplementation with whey protein improves blood pressure and vascular function in overweight and obese individuals.  相似文献   

16.
We studied the utilization of protein-hydrolyzed sweet cheese whey as a medium for the production of β-galactosidase by the yeasts Kluyveromyces marxianus CBS 712 and CBS 6556. The conditions for growth were determined in shake cultures. The best growth occurred at pH 5.5 and 37°C. Strain CBS 6556 grew in cheese whey in natura, while strain CBS 712 needed cheese whey supplemented with yeast extract. Each yeast was grown in a bioreactor under these conditions. The strains produced equivalent amounts of β-galactosidase. To optimize the process, strain CBS 6556 was grown in concentrated cheese whey, resulting in a higher β-galactosidase production. The β-galactosidase produced by strain CBS 6556 produced maximum activity at 37°C, and had low stability at room temperature (30°C) as well as at a storage temperature of 4°C. At −4°C and −18°C, the enzyme maintained its activity for over 9 weeks. Received 20 January 1999/ Accepted in revised form 30 April 1999  相似文献   

17.
Summary Whey could be anaerobically digested at space loadings up to 36 kg COD/m3·d in an upflow digester containing porous clay beads for immobilization of microorganisms. In a parallel fermenter without immobilization a space loading of only 8 kg/m3·d was reached. The start-up time was very much reduced by the support material. The COD-reduction in both reactors was 95% and volatile fatty acids in the effluent were below 10 mmol/l. During the digestion of whey a thick layer of Methanothrix soehngenii and occasionally Methanobrevibacter arboriphilus was immobilized on the clay beads. The Methanothrix soehngenii layer disappeared, when whey permeate was fed. Methanosarcina spec. became the predominant acetotrophic methanogen, probably due to the lower pH resulting from digestion of whey permeate. Methanosarcina spec., however, was suspended and only occasionally trapped in the pores of the clay beads. No significant adhesion of other bacteria occurred.In a chemostat a consortium of 5 isolates from digested whey and a strain of Methanosarcina barkeri was able to degrade all components of whey, although at a slightly lower conversion rate than by the complex natural consortium. The total population in the whey digester was more than twice as numerous as that in the whey permeate digester. The lower number of acetotrophic methanogens seemed to be the rate-limiting step in the whey permeate digester and seemed to be responsible for the lower overall conversion rates.Dedicated to Professor Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

18.
Endo‐βN‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015  相似文献   

19.
Most fermented milk prepared by strains of Lactobacillus helveticus showed significant antihypertensive effect in spontaneously hypertensive rats (SHR) by oral administration. However, milk fermented by other species of lactic acid bacteria did not show significant antihypertensive effects. Most of the whey fractions of the milk fermented by L. helveticus or Lactobacillus delbrueckii subsp. bulgaricus showed higher angiotensin I-converting enzyme (ACE) inhibitory activity than the activity of milk fermented by other species. Proteolytic activity in cell wall and peptide content of the fermented milk were higher in L. helveticus strains than other species.  相似文献   

20.
Controlled heating in a dry state greatly improved the surface functional properties of whey proteins (β-lactoglobulin and α-lactalbumin). Although whey proteins were completely insolubilized by heating at 80°C in an aqueous solution, their solubility was kept even after heating at 80°C in a dry state (7.5% moisture content) for 5 days. The surface hydrophobicity of α-lactalbumin was increased during the dry-heating, while that of β-lactoglobulin was decreased. In addition, the fluorescence spectra excited at 280 nm of dry-heated whey proteins suggested the significant conformational changes. High-performance gel chromatography showed that a considerable amount of soluble aggregates was formed in the dry-heated β-lactoglobulin, while a small amount of soluble aggregate was observed in the dry-heated α-lactalbumin. The foaming properties of dry-heated whey proteins were increased to about 3 times that of untreated proteins. The emulsifying properties of dry-heated whey proteins were also increased, compared to untreated proteins, although a slight decrease in the emulsion stability was observed in dry-heated β-lactoglobulin. The improvement of the surface properties seemed to come from the partial unfolding suitable for the formation of foam film and the entrapment of oil droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号