首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of 2-hydroxy-N-arylbenzenesulfonamides were identified to be ATP-citrate lyase (ACL) inhibitors with compound 9 displaying potent in vitro activity (IC(50)=0.13 microM). Chronic oral dosing of compound 9 in high-fat fed mice lowered plasma cholesterol, triglyceride, and glucose, as well as inhibited weight gain.  相似文献   

2.
Hepatic ATP-citrate lyase prepared with a fluoride-free step to allow endogenous phosphatases to dephosphorylate the enzyme was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase and [γ-32P]ATP. After electrophoresis the radioactive phosphate was located predominantly in the gel slice containing the Coomassie blue stained protein corresponding to ATP-citrate lyase. The Stoichiometry of phosphorylation of hepatic ATP-citrate lyase in vitro by the catalytic subunit was such that 0.53 ± 0.02 molecules of phosphate were incorporated per subunit. The degree of phosphorylation was independent of the amount of ATP-citrate lyase present as substrate in the concentration range 1.2–6.4 μm. In the absence of catalytic subunit there was very little labeled phosphate incorporated into ATP-citrate lyase. Phosphorylation of ATP-citrate lyase by catalytic subunit was abolished by the specific protein inhibitor of cyclic AMP-dependent protein kinase. When ATP-citrate lyase was subjected to electrophoresis under nondenaturing conditions, lyase activity was recovered from the gel slice corresponding to the Coomassie blue staining phosphoprotein of a stained gel run in parallel.  相似文献   

3.
The first protein histidine phosphatase from vertebrates discovered recently was found in a variety of tissues, however, a physiological substrate protein was missing. Phosphorylation of liver extracts in the presence of EDTA, followed by SDS-PAGE and autoradiography showed labeling of three proteins. Acid- and alkaline-treatment revealed the existence of N-phosphates. Addition of histidine phosphatase exclusively resulted in dephosphorylation of a 110kDa protein (denaturing conditions). Gelfiltration revealed its native molecular mass of approximately 450kDa. That protein was purified and identified as ATP-citrate lyase. The results are in favor of histidine phosphatase playing an important yet unidentified role in metabolic processes.  相似文献   

4.
We have examined the mechanism whereby glucagon stimulates the phosphorylation of ATP-citrate lyase in intact rat hepatocytes. Purified ATP-citrate lyase is phosphorylated in vitro by the catalytic subunit of the cyclic AMP-dependent protein kinase, in a reaction wherein 2-3 mol phosphate/mol lyase are incorporated, at an initial rate that approaches that observed for mixed histone. This reaction is completely abolished by the protein kinase inhibitor protein. Limited tryptic digestion of ATP-citrate lyase phosphorylated in vitro by the cyclic AMP-dependent protein kinase yields a pattern of 32P-labeled peptides, indistinguishable from those observed in parallel digests of lyase isolated from 32P-labeled, glucagon-stimulated hepatocytes. Phosphorylase b kinase catalyzes the incorporation of 1 mol phosphate/mol lyase, albeit at less than 1/160 the rate observed for phosphorylase b. The phosphorylation of purified ATP-citrate lyase is also catalyzed by homogenates of hepatocytes. This reaction is stimulated by cyclic AMP. At 30 degrees C, in the presence of maximally stimulating concentrations of cyclic AMP, the addition of excess protein kinase inhibitor protein inhibits the phosphorylation of ATP-citrate lyase by 67%. Thus, hepatocytes contain both cyclic AMP-dependent and cyclic AMP-independent ATP-citrate lyase kinase activities. Pretreatment of hepatocytes with glucagon (10(-8) M for 2 min) prior to homogenization results in activation of an endogenous hepatocyte ATP-citrate lyase kinase, as well as histone kinase and phosphorylase b kinase; the glucagon-stimulated increment in lyase kinase (and histone kinase) is observed only when homogenates are assayed in the absence of added cyclic AMP, and is completely abolished by an excess of the protein kinase inhibitor protein. We conclude that the glucagon-stimulated phosphorylation of ATP-citrate lyase in intact hepatocytes is catalyzed directly by the cyclic AMP-dependent protein kinase.  相似文献   

5.
Homogeneous rat liver ATP-citrate lyase (EC 4.1.3.8) was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. In agreement with other workers, the maximum level of phosphorylation that we observed was approx. 2 mol/mol of tetramer. Phosphorylated and non-phosphorylated forms of ATP-citrate lyase were prepared. Their kinetic properties were examined using an assay system in which the concentrations of Mg.ATP, magnesium.citrate and CoA were varied systematically at a constant concentration of Mg2+. The phosphorylated form had a two-fold higher Km for Mg.ATP than did the non-phosphorylated form, but no other kinetic differences between the two forms were detected. When ATP-citrate lyase was assayed at a concentration of Mg.ATP well below Km, it was found that phosphorylation of the enzyme correlated well with a decrease of approx. 50% in its activity. This is the first demonstration that phosphorylation can affect the activity of ATP-citrate lyase.  相似文献   

6.
We have recently shown that phosphorylation of histidine residue of the alpha-subunit of the succinyl-CoA synthetase is inhibited by both vanadate and vanadyl. To assess the university of this inhibition, we have estimated the effect of vanadate on the phosphorylation of another enzyme ATP-citrate lyase, prepared from rat liver. This enzyme contains histidine as the only amino acid with an acid-labile (P-N) phosphate bond. The 67% inhibition of endogenous phosphorylation by 1 mM vanadate disappeared after cleavage of the acidic P-N bond of histidine with acidic sample solution. The remaining 33 per cent radioactivity was due to labelling of the acid-stable phosphoamino acids (P-serine and P-threonine), the phosphorylation of which was not affected by vanadate. The dose response curve for vanadate inhibition closely resembles that shown previously for inhibition of phosphorylation of histidine in the succinyl-CoA synthetase. The results suggest that the action of vanadate on histidinyl phosphorylation is a more general effect (like its influence on phosphorylation of the protein-bound tyrosine).  相似文献   

7.
Cloning and expression of a human ATP-citrate lyase cDNA.   总被引:1,自引:0,他引:1  
A full-length cDNA clone of 4.3 kb encoding the human ATP-citrate lyase enzyme has been isolated by screening a human cDNA library with the recently isolated rat ATP-citrate lyase cDNA clone [Elshourbagy et al. (1990) J. Biol. Chem. 265, 1430]. Nucleic-acid sequence data indicate that the cDNA contains the complete coding region for the enzyme, which is 1105 amino acids in length with a calculated molecular mass of 121,419 Da. Comparison of the human and rat ATP-citrate lyase cDNA sequences reveals 96.3% amino acid identity throughout the entire sequence. Further sequence analysis identified the His765 catalytic phosphorylation site, the ATP-binding site, as well as the CoA binding site. The human ATP-citrate lyase cDNA clone was subcloned into a mammalian expression vector for expression in African green monkey kidney cells (COS) and Chinese hamster ovary cells (CHO) cells. Transfected COS cells expressed detectable levels of an enzymatically active recombinant ATP-citrate lyase enzyme. Stable, amplified expression of ATP-citrate lyase in CHO cells as achieved by using coamplification with dihydrofolate reductase. Resistant cells expressed high levels of enzymatically active ATP-citrate lyase (3 pg/cell/d). Site-specific mutagenesis of His765----Ala diminishes the catalytic activity of the expressed ATP-citrate lyase protein. Since catalysis of ATP-citrate lyase is postulated to involve the formation of phosphohistidine, these results are consistent with the pattern of earlier observations of the significance of the histidine residue in catalysis of the human ATP-citrate lyase.  相似文献   

8.
Protein kinase B (Akt) plays a central role in cellular regulation, although many of the physiologically relevant substrates for the kinase remain to be identified. In this study, we have isolated a protein from primary epididymal adipocytes with an apparent molecular weight of 125,000. This protein exhibited immunoreactivity, in an insulin-dependent manner, with a phosphospecific antibody raised against the protein kinase B substrate consensus sequence RXRXX(pS/pT) as well as a phosphospecific antibody that recognizes serine 21/9 of GSK-3alpha/beta. MALDI-TOF mass spectrometry revealed the protein to be ATP-citrate lyase, suggesting that the two phosphospecific antibodies recognize phosphoserine 454, a previously reported insulin- and isoproterenol-stimulated ATP-citrate lyase phosphorylation site. Indeed, both insulin and isoproterenol stimulated the phosphorylation of this protein on the site recognized by the phosphospecific antibodies in a wortmannin-sensitive and -insensitive manner, respectively. In addition, transient expression of a constitutively active protein kinase B in primary adipocytes mimicked the effect of insulin on ATP-citrate lyase phosphorylation. Furthermore, ATP-citrate lyase was phosphorylated in vitro by recombinant protein kinase B on the same site. Taken together, these results demonstrate that serine 454 of ATP-citrate lyase is a novel and major in vivo substrate for protein kinase B.  相似文献   

9.
32P-labeled ATP-citrate lyase isolated from 32P-labeled hepatocytes treated with insulin contained 1.6-1.8-fold greater 32P-radioactivity per mg protein than control enzyme. Both enzyme preparations were digested in parallel with trypsin until 94% of all 32P-radioactivity was rendered acid soluble. Quantitative high performance liquid chromatographic peptide mapping of the tryptic digests revealed a principal 32P-peptide which accounted for at least 80% of the insulin induced increment in 32P-radioactivity of native lyase. This peptide was purified, sequenced, and the site of 32P-phosphorylation assigned by two methods: electrophoresis (pH 6.5) of residual peptide after each step of Edman degradation and solid phase sequencing. The site of insulin-directed phosphorylation of ATP-citrate lyase (Thr-Ala-Ser(32P)-Phe-Ser-Glu-Ser-Arg) is the same as that directed by glucagon, and, in turn, identical with that phosphorylated by the cAMP-dependent protein kinase in vitro.  相似文献   

10.
Insulin decreases multifunctional protein kinase (MFPK) activity in rat adipose tissue [Ramakrishna, S., & Benjamin, W. B. (1988) J. Biol. Chem. 263, 12677-12681]. Insulin also decreases the phosphorylation of peptide B but increases the phosphorylation of peptide A of ATP-citrate lyase (ATP-CL). The mechanism for this increase in peptide A phosphorylation was studied with purified ATP-CL from control and insulin- and isoproterenol-treated fat pads by using MFPK and the catalytic subunit of cAMP-dependent protein kinase (A-kinase). ATP-CL purified from insulin-treated fat pads is a better substrate for phosphorylation by MFPK compared to controls. This result is consistent with the hypothesis that insulin action decreases peptide B phosphorylation. To determine if the degree of phosphorylation at peptide B affects the phosphorylation rate of peptide A by A-kinase, ATP-CL was prepared with determined phosphate contents of peptides A and B. ATP-CL with a low phosphate content at peptide B is a better substrate for phosphorylation at peptide A by A-kinase than is ATP-CL with a high phosphate content at peptide B. These results suggest that the insulin-induced increase in ATP-CL phosphorylation at peptide A is due to a decrease in peptide B phosphorylation. ATP-CL prepared from isoproterenol-treated fat pads is also a better substrate for phosphorylation at peptide B by MFPK than controls. This increase in phosphorylation at peptide B by MFPK is due to positive second-site regulation by the isoproterenol-induced increase in peptide A phosphorylation.  相似文献   

11.
12.
Acetyl-CoA, an important molecule in cellular metabolism, is generated in multiple subcellular compartments and mainly used for energy production, biosynthesis of a diverse set of molecules, and protein acetylation. In eukaryotes, cytosolic acetyl-CoA is derived mainly from the conversion of citrate and CoA by ATP-citrate lyase. Here, we describe the targeted deletions of acl1 and acl2, two tandem divergently transcribed genes encoding subunits of ATP-citrate lyase in Aspergillus niger. We show that loss of acl1 or/and acl2 results in a significant decrease of acetyl-CoA and citric acid levels in these mutants, concomitant with diminished vegetative growth, decreased pigmentation, reduced asexual conidiogenesis, and delayed conidial germination. Exogenous addition of acetate repaired the defects of acl-deficient strains in growth and conidial germination but not pigmentation and conidiogenesis. We demonstrate that both Acl1 and Acl2 subunits are required to form a functional ATP-citrate lyase in A. niger. First, deletion of acl1 or/and acl2 resulted in similar defects in growth and development. Second, enzyme activity assays revealed that loss of either acl1 or acl2 gene resulted in loss of ATP-citrate lyase activity. Third, in vitro enzyme assays using bacterially expressed 6His-tagged Acl protein revealed that only the complex of Acl1 and Acl2 showed ATP-citrate lyase activity, no enzyme activities were detected with the individual protein. Fourth, EGFP-Acl1 and mCherry-Acl2 proteins were co-localized in the cytosol. Thus, acl1 and acl2 coordinately modulate the cytoplasmic acetyl-CoA levels to regulate growth, development, and citric acid synthesis in A. niger.  相似文献   

13.
The mechanism of ATP-citrate lyase has been proposed to involve a citryl-enzyme intermediate. When the enzyme is incubated with its substrates ATP and [14C]citrate, but in the absence of the final acceptor, two distinct types of citrate-containing complex can be isolated. At early time points, a highly unstable complex can be isolated by gel filtration which has a half-life of 36 s at 25 degrees C. This complex reacts rapidly with CoA, but cannot be acid-precipitated; behaviour consistent with its identification as enzyme-citryl phosphate. However, ATP-citrate lyase is also capable of undergoing a slow time-dependent covalent incorporation of radiolabel from [14C]citrate. This modification is acid-stable, non-specific, and cannot be reversed by the addition of CoA. When cytochrome is included in the reaction mixture as a heterologous acceptor, it is also citrylated. These reactions require that when ATP-citrate lyase is incubated with all its substrates except for CoA, a freely diffusible citrylating species is generated within the active site. This evidence suggests that there is no requirement for the mechanism of ATP-citrate lyase to proceed via a covalent citryl-enzyme intermediate. By analogy with succinyl-CoA synthetase, an enzyme which has a high degree of sequence similarity with ATP-citrate lyase, a simple mechanism is proposed for the enzyme in which citryl-CoA is produced by direct nucleophilic attack on citryl phosphate.  相似文献   

14.
ATP-citrate lyase and acetyl-CoA carboxylase purified from lactating rat mammary gland are phosphorylated stoichiometrically by the calmodulin-dependent multiprotein kinase from rabbit skeletal muscle. The reactions are completely dependent on the presence of both Ca2+ and calmodulin. ATP-citrate lyase and acetyl-CoA carboxylase are also phosphorylated stoichiometrically by the Ca2+- and phospholipid-dependent protein kinase (protein kinase C) purified from bovine brain. Phosphorylation of these substrates is stimulated 6-fold and 40-fold respectively by Ca2+ and phosphatidylserine. The calmodulin-dependent and phospholipid-dependent protein kinases phosphorylate the same serine residue on ATP-citrate lyase that is phosphorylated by cyclic-AMP-dependent protein kinase. The sequence of the tryptic peptide containing this site on the mammary enzyme is identical with the sequence of the peptide containing the site on ATP-citrate lyase that is phosphorylated in isolated hepatocytes in response to insulin and/or glucagon. The calmodulin-dependent, phospholipid-dependent and cyclic-AMP-dependent protein kinases phosphorylate distinct sites on acetyl-CoA carboxylase. However, one of the three phosphorylated tryptic peptides derived from enzyme treated with the phospholipid-dependent kinase is identical with the major phosphopeptide (T1) derived from enzyme treated with cyclic-AMP-dependent protein kinase. Phosphorylation of acetyl-CoA carboxylase by the phospholipid-dependent protein kinase inactivates acetyl-CoA carboxylase in a similar manner to cyclic-AMP-dependent protein kinase. With either protein kinase slightly greater phosphorylation and inactivation is seen after pretreatment of acetyl-CoA carboxylase with protein phosphatase-2A, but the effects of the protein phosphatase treatment are not completely reversed. Inactivation by the phospholipid-dependent protein kinase is Ca2+- and phospholipid-dependent, is reversed by protein phosphatase-2A, and correlates with the degree of phosphorylation. The relevance of these findings to insulin- and growth-factor-promoted phosphorylation of ATP-citrate lyase and acetyl-CoA carboxylase in intact cells is discussed.  相似文献   

15.
16.
17.
In the Ob 17 preadipocyte cell line, during adipose differentiation, T3 amplified the progressive expression of two enzymes of the lipogenic pathway, ATP-citrate lyase (ATP-CL) and malic enzyme (ME) as previously described for fatty acid synthase (FAS) and fatty acid synthesis, and in the same time-period of development. However, the stimulation by T3 was sustained at late stages of differentiation whereas it declined in FAS studies. The stimulation was preceded by an increase in the relative abundance of the specific mRNAs. Two ME mRNA species were detected (21S and 27S) and found to be differently distributed. Their abundance was asynchronously increased by T3 with a predominant effect on the 21S species. Culture of the cells in a thyroid-hormone depleted medium prevented any significant increase of ME activity. Early inclusion of T3 largely restored ME development whereas late elimination of T3 only moderately impaired it. It is suggested that T3 plays a crucial role at an early step of adipose differentiation, this leading to an increased expression of a set of late adipose phenotypes such as several lipogenic enzymes.  相似文献   

18.
《Cell reports》2023,42(2):112067
  1. Download : Download high-res image (218KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号