首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Nox1 is a membrane-integrated protein that belongs to the Nox family of superoxide-producing NADPH oxidases. Here we show that human Nox1 undergoes glycosylation at Asn-162 and Asn-236 in the second and third extracellular loops, respectively. Simultaneous threonine substitution for these residues completely abrogates the glycosylation, but does not prevent Nox1 from forming a heterodimer with p22phox, trafficking to the cell surface, or producing superoxide. In the absence of p22phox, Nox1 is transported to the plasma membrane mainly as a form with high mannose N-glycans, although their conversion into complex N-glycans is induced by expression of p22phox. These findings indicate that glycosylation and subsequent N-glycan maturation of Nox1 are both dispensable for its cell surface recruitment. Superoxide production by unglycosylated Nox1 is largely dependent on p22phox, which is abrogated by glutamine substitution for Pro-156 in p22phox, a mutation leading to a defective interaction with the Nox1-activating protein Noxo1. Thus p22phox directly contributes to Nox1 activation in a glycosylation-independent manner, besides its significant role in Nox1 glycan maturation.  相似文献   

2.
In the present study we show in the Xenopus laevis expression system that the proton-coupled amino acid transporter 1 (PAT1, SLC36A1) is glycosylated at asparagine residues N174, N183 and N470. To determine the functional role of N-glycosylation, glycosylation-deficient mutants were analyzed by two-electrode voltage-clamp measurements after expression in X. laevis oocytes. Single replacements of asparagine residues had no effect on transport activity. However, multiple substitutions resulted in a decreased transport rate, leaving Kt unchanged. Immunofluorescence localisation revealed a diminished plasma membrane expression of glycosylation-defective mutants. This indicates that N-glycans are not required for transport function, but are important for membrane targeting.  相似文献   

3.
A disintegrin and metalloprotease 10 (ADAM10) is a type I transmembrane glycoprotein with four potential N-glycosylation sites (N267, N278, N439 and N551), that cleaves several plasma membrane proteins. In this work, ADAM10 was found to contain high-mannose and complex-type glycans. Individual N-glycosylation site mutants S269A, T280A, S441A, T553A were constructed, and results indicated that all sites were occupied. T280A was found to accumulate in the endoplasmic reticulum as the non-processed precursor of the enzyme. Furthermore, it exhibited only residual levels of metalloprotease activity in vivo towards the L1 cell adhesion molecule, as well as in vitro, using a ProTNF-alpha peptide as substrate. S441A showed increased ADAM10 susceptibility to proteolysis. Mutation of N267, N439 and N551 did not completely abolish enzyme activity, however, reduced levels were found. ADAM10 is sorted into secretory vesicles, the exosomes. Here, a fraction of ADAM10 from exosomes was found to contain more processed N-linked glycans than the cellular enzyme. In conclusion, N-glycosylation is crucial for ADAM10 processing and resistance to proteolysis, and results suggest that it is required for full-enzyme activity.  相似文献   

4.

Background

N-linked oligosaccharides operate as tags for protein quality control, consigning glycoproteins to different fates, i.e. folding in the endoplasmic reticulum (ER), vesicular transport between the ER and the Golgi complex, and ER-associated degradation of glycoproteins, by interacting with a panel of intracellular lectins in the early secretory pathway.

Scope of review

This review summarizes the current state of knowledge regarding the molecular and structural basis for glycoprotein-fate determination in cells that is achieved through the actions of the intracellular lectins and its partner proteins.

Major conclusions

Cumulative frontal affinity chromatography (FAC) data demonstrated that the intracellular lectins exhibit distinct sugar-binding specificity profiles. The glycotopes recognized by these lectins as fate determinants are embedded in the triantennary structures of the high-mannose-type oligosaccharides and are exposed upon trimming of the outer glucose and mannose residues during the N-glycan processing pathway. Furthermore, recently emerged 3D structural data offer mechanistic insights into functional interplay between an intracellular lectin and its binding partner in the early secretory pathway.

General significance

Structural biology approaches in conjunction with FAC methods provide atomic pictures of the mechanisms behind the glycoprotein-fate determination in cells. This article is a part of a Special issue entitled: Glycoproteomics.  相似文献   

5.
O-mannosylation is a vital protein modification. In humans, defective O-mannosylation of α-dystroglycan results in severe congenital muscular dystrophies. However, other proteins bearing this modification in vivo are still largely unknown. Here, we describe a highly reliable method combining glycosidase treatment with LC–MS analyses to identify mammalian O-mannosylated proteins from tissue sources. Our workflow identified T-cadherin (H-cadherin, CDH13) as a novel O-mannosylated protein. In contrast to known O-mannosylated proteins, single mannose residues (Man-α-Ser/Thr) are attached to this cell adhesion molecule. Conserved O-glycosylation sites in T-, E- and N-cadherins from different species, point to a general role of O-mannosyl glycans for cadherin function.  相似文献   

6.
What sequence features in integral membrane proteins determine which parts of the polypeptide chain will form transmembrane α-helices and which parts will be located outside the lipid bilayer? Previous studies on the integration of model transmembrane segments into the mammalian endoplasmic reticulum (ER) have provided a rather detailed quantitative picture of the relation between amino acid sequence and membrane-integration propensity for proteins targeted to the Sec61 translocon. We have now carried out a comparative study of the integration of Nout-Cin-orientated 19-residue-long polypeptide segments into the ER of the yeast Saccharomyces cerevisiae. We find that the ‘threshold hydrophobicity’ required for insertion into the ER membrane is very similar in S. cerevisiae and in mammalian cells. Further, when comparing the contributions to the apparent free energy of membrane insertion of the 20 natural amino acids between the S. cerevisiae and the mammalian ER, we find that the two scales are strongly correlated but that the absolute difference between the most hydrophobic and most hydrophilic residues is ∼ 2-fold smaller in S. cerevisiae.  相似文献   

7.
Human ATP-binding cassette transporter isoform B6 (ABCB6) has been proposed to be situated in both the inner and outer membranes of mitochondria. These inconsistent observations of submitochondrial localization have led to conflicting interpretation in view of directions of transport facilitated by ABCB6. We show here that ABCB6 has an N-terminal hydrophobic region of 220 residues that functions as a primary determinant of co-translational targeting to the endoplasmic reticulum (ER), but it does not have any known features of a mitochondrial targeting sequence. We defined the potential role of this hydrophobic extension of ABCB6 by glycosylation site mapping experiments, and demonstrated that the first hydrophobic segment acts as a type I signal-anchor sequence, which mediates N-terminal translocation through the ER membrane. Laser scanning microscopic observation revealed that ABCB6 did not co-localize with mitochondrial staining. Rather, it localized in the ER-derived and brefeldin A-sensitive perinuclear compartments, mainly in the Golgi apparatus.  相似文献   

8.
Zhou YB  Liu F  Zhu ZD  Zhu H  Zhang X  Wang ZQ  Liu JH  Han ZG 《FEBS letters》2004,576(3):401-407
The present study reported the isolation and characterization of a novel human secreted protein, named as hPAP21 (human protease-associated domain-containing protein, 21 kDa), encoded by the hypothetical gene chromosome 2 open reading frame 7 (C2orf7) that contains signal peptide in its N-terminus, without transmembrane domain, except for PA domain in its middle. Western blotting assay indicated that the c-Myc tagged hPAP21 could be secreted into culture medium in the transfected Chinese hamster ovary cells. However, the molecular weights, whatever intracellular (28 kDa) or extracellular (30 kDa) forms, are larger than that of the prediction. To define whether the glycosylation was important process for its secretion, endoglycosidase H (Endo H) and PNGase F (PNG F) were employed to evaluate the effect of glycosylation types on secretion of hPAP21. Interestingly, the extracellular forms were primarily sensitive to PNG F, not Endo H, implying that complex N-glycosylation could be required for the secretion of hPAP21. Furthermore, N-glycosylation of Asn171 was confirmed as potential crucial process for the secretory protein via site-directed mutagenesis assay. All data will be contributed to the understanding of molecular functions of hPAP21.  相似文献   

9.
Cathepsin V (L2), a lysosomal cysteine protease, is a member of cathepsin family, relating to cancer invasion and metastasis. Cathepsin V contains two predicted N-glycosylation sites, but it has not been reported whether cathepsin V is glycosylated or not. In this study, we clarified the role of N-glycosylation of cathepsin V for its functions. We demonstrated that cathepsin V is N-glycosylated at both Asn221 and Asn292 using mass spectrometry and site-directed mutagenesis. N-glycosylation of cathepsin V was important for transportation to lysosome, secretion, and activity in HT1080 cells. These data demonstrated that functions of cathepsin V are controlled by N-glycosylation.  相似文献   

10.
N-Acetylneuraminic acid, an important component of glycoconjugates with various biological functions, can be produced from N-acetyl-d-glucosamine (GlcNAc) and pyruvate using a one-pot, two-enzyme system consisting of N-acyl-d-glucosamine 2-epimerase (AGE) and N-acetylneuraminate lyase (NAL). In this system, the epimerase catalyzes the conversion of GlcNAc into N-acetyl-d-mannosamine (ManNAc). However, all currently known AGEs have one or more disadvantages, such as a low specific activity, substantial inhibition by pyruvate and strong dependence on allosteric activation by ATP. Therefore, four novel AGEs from the cyanobacteria Acaryochloris marina MBIC 11017, Anabaena variabilis ATCC 29413, Nostoc sp. PCC 7120, and Nostoc punctiforme PCC 73102 were characterized. Among these enzymes, the AGE from the Anabaena strain showed the most beneficial characteristics. It had a high specific activity of 117 ± 2 U mg−1 at 37 °C (pH 7.5) and an up to 10-fold higher inhibition constant for pyruvate as compared to other AGEs indicating a much weaker inhibitory effect. The investigation of the influence of ATP revealed that the nucleotide has a more pronounced effect on the Km for the substrate than on the enzyme activity. At high substrate concentrations (≥200 mM) and without ATP, the enzyme reached up to 32% of the activity measured with ATP in excess.  相似文献   

11.
The Na+-dependent transporters, hSVCT1 and hSVCT2, were assessed in COS-1 cells for their membrane topology. Antibodies to N- and C-termini of hSVCT1 and C-terminus of hSVCT2 identified positive immunofluorescence only after permeabilisation, suggesting these regions are intracellular. PNGase F treatment confirmed that WT hSVCT1 (∼ 70-100 kDa) is glycosylated and site-directed mutagenesis of the three putative N-glycosylation sites, Asn138, Asn144, Asn230, demonstrated that mutants N138Q and N144Q were glycosylated (∼ 68-90 kDa) with only 31-65% of WT l-ascorbic acid (AA) uptake while the glycosylation profile of N230Q remained unaltered (∼ 98% of WT activity). However, the N138Q/N144Q double mutant displayed barely detectable membrane expression at ∼ 65 kDa, no apparent glycosylation and minimal AA uptake (< 10%) with no discernible improvement in expression or activity when cultured at 28 °C or 37 °C. Marker protein immunocytochemistry with N138Q/N144Q identified intracellular aggregates with hSVCT1 localised at the nuclear membrane but absent at the plasma membrane thus implicating its role as a possible intracellular transporter and suggesting N-glycosylation is required for hSVCT1 membrane targeting. Also, Lys242 on the same putative hydrophilic loop as Asn230 after biotinylation was inaccessible from the extracellular side when analysed by MALDI-TOF MS. A new hSVCT1 secondary structure model supporting these findings is proposed.  相似文献   

12.
UDP-glucose:glycoprotein glucosyltransferase plays a key role in glycoprotein quality control in the endoplasmic reticulum, by virtue of its ability to discriminate folding states. Although lines of evidence have clarified the ability of UGGT to recognize a partially unfolded protein, its mechanistic rationale has been obscure. In this study, the substrate recognition mechanism of UGGT was studied using synthetic substrate of UGGT. Although UGGT has high extent of surface hydrophobicity, it clearly lacks property of typical molecular chaperones. Furthermore, it was revealed that the addition of the substrate caused secondary structure change of UGGT in a dose-dependent manner, resulting that the Kd value of the UGGT-substrate interaction was estimated from theoretical formula based on 1:1 complexation between UGGT and the acceptor substrate. Moreover, the kinetic analysis of glucosyltransferase activity of UGGT elucidated Michaelis constant Km correctly.  相似文献   

13.
Human brain cellular prion protein (PrP(c)) is cleaved within its highly conserved domain at amino acid 110/111/112. This cleavage generates a highly stable C-terminal fragment (C1). We examined the relative abundance of holo- and truncated PrP(c) in human cerebral cortex and we found important inter-individual variations in the proportion of C1. Neither age nor postmortem interval explain the large variability observed in C1 amount. Interestingly, our results show that high levels of C1 are associated with the presence of the active ADAM 10 suggesting this zinc metalloprotease as a candidate for the cleavage of PrP(c) in the human brain.  相似文献   

14.
Chen Y  Moiseyev G  Takahashi Y  Ma JX 《FEBS letters》2006,580(17):4200-4204
RPE65, a membrane-associated protein in the retinal pigment epithelium, is the isomerohydrolase essential for regenerating 11-cis retinal, the chromophore for visual pigments. RPE65 mutations are associated with inherited retinal dystrophies. Here we report that single point mutations of RPE65, Y144D and P363T, identified in patients with Leber's congenital amaurosis (LCA), significantly decreased the stability of RPE65. Moreover, these mutations altered subcellular localization of RPE65 and abolished its isomerohydrolase activity. These observations suggest that the decreased protein stability and altered subcellular localization of RPE65 may represent a mechanism for these mutations to lead to vision loss in LCA patients.  相似文献   

15.
Molecular tethers have a central role in the organization of the complex membrane architecture of eukaryotic cells. p115 is a ubiquitous, essential tether involved in vesicle transport and the structural organization of the exocytic pathway. We describe two crystal structures of the N-terminal domain of p115 at 2.0 Å resolution. The p115 structures show a novel α-solenoid architecture constructed of 12 armadillo-like, tether-repeat, α-helical tripod motifs. We find that the H1 TR binds the Rab1 GTPase involved in endoplasmic reticulum to Golgi transport. Mutation of the H1 motif results in the dominant negative inhibition of endoplasmic reticulum to Golgi trafficking. We propose that the H1 helical tripod contributes to the assembly of Rab-dependent complexes responsible for the tether and SNARE-dependent fusion of membranes.  相似文献   

16.
Golgi alpha-mannosidase II is essential for the efficient formation of complex-type glycosylation. Here, we demonstrate that the disruption of Golgi alpha-mannosidase II activity by swainsonine in human embryonic kidney cells is capable of inducing a novel class of hybrid-type glycosylation containing a partially processed mannose moiety. The discovery of 'Man(6)-based' hybrid-type glycans reveals a broader in vivo specificity of N-acetylglucosaminyltransferase I, further defines the arm-specific tolerance of core alpha1-6 fucosyltransferase to terminal alpha1-2 mannose residues, and suggests that disruption of Golgi alpha-mannosidase II activity is capable of inducing potentially 'non-self' structures.  相似文献   

17.
Functional and structural properties of protoglobin from Methanosarcina acetivorans, whose Cys(101)E20 residue was mutated to Ser (MaPgb*), and of mutants missing either the first 20 N-terminal amino acids (MaPgb*-ΔN20 mutant), or the first 33 N-terminal amino acids [N-terminal loop of 20 amino acids and a 13-residue Z-helix, preceding the globin fold A-helix; (MaPgb*-ΔN20Z mutant)] have been investigated. In keeping with the MaPgb*-ΔN20 mutant crystal structure, here reported at 2.0 Å resolution, which shows an increased exposure of the haem propionates to the solvent, the analysis of ligand binding kinetics highlights high accessibility of ligands to the haem pocket in ferric MaPgb*-ΔN20. CO binding to ferrous MaPgb*-ΔN20 displays a marked biphasic behavior, with a fast binding process close to that observed in MaPgb* and a slow carbonylation process, characterized by a rate-limiting step. Conversely, removal of the first 33 residues induces a substantial perturbation of the overall MaPgb* structure, with loss of α-helical content and potential partial collapse of the protein chain. As such, ligand binding kinetics are characterized by very slow rates that are independent of ligand concentration, this being indicative of a high energy barrier for ligand access to the haem, possibly due to localized misfolding. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

18.
The organic solute transporter (OST)(alpha)-OST(beta) is an unusual heteromeric carrier expressed in a variety of tissues including the small intestine, colon, liver, biliary tract, kidney, and adrenal gland. In polarized epithelial cells, OSTα-OSTβ protein is localized on the basolateral membrane and functions in the export or uptake of bile acids and steroids. This article reviews recent results including studies of knockout mouse models that provide new insights to the role of OSTα-OSTβ in the compartmentalization and metabolism of these important lipids.  相似文献   

19.
20.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号