首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The Saccharomyces cerevisiae open reading frame YFR003c encodes a small (155-amino acid) hydrophilic protein that we identified as a novel, heat-stable inhibitor of type 1 protein phosphatase (Ypi1). Ypi1 interacts physically in vitro with both Glc7 and Ppz1 phosphatase catalytic subunits, as shown by pull-down assays. Ypi1 inhibits Glc7 but appears to be less effective toward Ppz1 phosphatase activity under the conditions tested. Ypi1 contains a 48RHNVRW53 sequence, which resembles the characteristic consensus PP1 phosphatase binding motif. A W53A mutation within this motif abolishes both binding to and inhibition of Glc7 and Ppz1 phosphatases. Deletion of YPI1 is lethal, suggesting a relevant role of the inhibitor in yeast physiology. Cells overexpressing Ypi1 display a number of phenotypes consistent with an inhibitory role of this protein on Glc7, such as decreased glycogen content and an increased growth defect in a slt2/mpk1 mitogen-activated protein kinase-deficient background. Taking together, these results define Ypi1 as the first inhibitory subunit of Glc7 identified in budding yeast.  相似文献   

2.
Two substrains of the epithelial liver cell line C1I, one storing large amounts of glycogen, the other one being very poor in glycogen were used as a model for studying glycogen synthesis. The glycogen content of glycogen-rich cells doubled during the proliferative phase and remained high in plateau phase although glycogen synthase I activity was not significantly altered during growth cycle and was too low to account for the increase in glycogen. However, the activity of the glucose 6-phosphate (Glc6-P)-dependent synthase rose continuously during growth cycle, and intracellular Glc6-P-concentration increased about 10-fold in log phase cells to 0.72 mumol g-1 wet weight. A0.5 of synthase for Glc6-P was 0.79 mM. It was also found that in contrast to the enzyme from normal liver, glycogen phosphorylase a from C1I cells was inhibited by Glc6-P, the apparent Ki being 0.45 mM. It was concluded that glycogen accumulation in C1I cells was due to stimulation of synthase and inhibition of phosphorylase by Glc6-P. Findings from the glycogen-poor cell line which revealed similar specific activities of synthase and phosphorylase but only low Glc6-P (0.056 mumol g-1 wet weight) supported this conclusion. Addition of glucose to starved cells resulted in a transient activation of synthase in both cell lines. Net glycogen synthesis, was, however, only observed in the cells with a high Glc6-P-content. Thus, modulation of synthase and phosphorylase by Glc6-P and not activation/inactivation of the enzymes seems to play a predominant role in glycogen accumulation in this cell line.  相似文献   

3.
The glucose-6-phosphate (Glc6P) and 6-phosphogluconate (6PG) dehydrogenases of the amino-acid-producing bacterium Corynebacterium glutamicum were purified to homogeneity and kinetically characterized. The Glc6P dehydrogenase was a heteromultimeric complex, which consists of Zwf and OpcA subunits. The product inhibition pattern of the Glc6P dehydrogenase was consistent with an ordered bi-bi mechanism. The 6PG dehydrogenase was found to operate according to a Theorell-Chance ordered bi-ter mechanism. Both enzymes were inhibited by NADPH and the 6PG dehydrogenase additionally by ATP, fructose 1,6-bisphosphate (Fru1,6P2), D-glyceraldehyde 3-phosphate (Gra3P), erythrose 4-phosphate and ribulose 5-phosphate (Rib5P). The inhibition by NADPH was considered to be most important, with inhibition constants of around 25 microM for both enzymes. Intracellular metabolite concentrations were determined in two isogenic strains of C. glutamicum with plasmid-encoded NAD- and NADP-dependent glutamate dehydrogenases. NADP+ and NADPH levels were between 130 microM and 290 microM, which is very much higher than the respective Km and Ki values. The Glc6P concentration was around 500 microM in both strains. The in vivo fluxes through the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified enzymes determined in vitro were in agreement with the same fluxes determined by NMR after 13C-labelling. From the derived kinetic model thus validated, it is concluded that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH and NADP+ concentrations and the specific enzyme activities of both dehydrogenases.  相似文献   

4.
A complex of the enzymes from the liver of the marine mollusk Littorina kurila that hydrolyzes laminaran was investigated. Two (1-->3)-beta-d-glucanases (G-I and G-II) were isolated. The molecular mass of G-I as estimated by gel-permeation chromatography and SDS-PAGE analysis was 32 and 40kDa, respectively. The G-II molecular mass according to SDS-PAGE analysis was about 200kDa. The pH optimum for both G-I and G-II was pH 5.4. The G-I had narrow substrate specificity and hydrolyzed only the (1-->3)-beta-d-glucosidic bonds in the mixed (1-->3),(1-->6)- and (1-->3),(1-->4)-beta-d-glucans down to glucose and glucooligosaccharides. This enzyme acted with retention of the anomeric configuration and catalyzed a transglycosylation reaction. G-I was classified as the glucan endo-(1-->3)-beta-d-glucosidase (EC 3.2.1.39). G-II exhibited both exo-glucanase and beta-d-glucoside activities. This enzyme released from the laminaran glucose as a single product, but retained the anomeric center configuration and possessed transglycosylation activity. The hydrolysis rate of glucooligosaccharides by G-I decreased with an increase of the substrate's degree of polymerization. In addition to (1-->3)-beta-d-glucanase activity, the enzyme had the ability to hydrolyze p-nitrophenyl beta-d-glucoside and beta-d-glucobioses: laminaribiose, gentiobiose, and cellobiose, with the rate ratio of 50:12:1. G-II may correspond to beta-d-glucoside glucohydrolase (EC 3.2.1.21).  相似文献   

5.
Two enzymes have been isolated from Candida bogoriensis which catalyze the hydrolysis of 13-sophorosyloxydocosanoic acid (Glc2HDA) esters obtained from this organism. The 6',6"-diacetyl derivative of Glc2HDA (Ac2Glc2HDA) is hydrolyzed by an acetylesterase (EC 3.1.1.6) which has been purified 1300-fold. The acetylesterase has a molecular weight of 35,000 estimated from gel filtration, and is much more active with p-nitrophenyl acetate than with the acetylated glycolipid. The rate of hydrolysis increases with Ac2Glc2HDA concentration until a plateau is reached at a concentration of about 40 muM, near the critical micelle concentration of this glycolipid. These kinetic data are interpreted as an enzyme specificity for the monomeric, but not the micellar form of the glycolipid. The acetylesterase is inhibited by 0.1 to 10 mM diisopropyl fluorophosphate, 5 mM p-hydroxymercuribenzoate, and 5 mM N-ethylmaleimide, but only slightly by 5 mM iodoacetamide. The methyl ester of Ac2Glc2HDA is hydrolyzed by at least two carboxylesterases (EC 3.1.1) which differ in size according to gel filtration. Their molecular weights are estimated as 140,000 for carboxyesterase A and 40,000 for carboxyesterase B. Both carboxylesterases were purified over 20-fold, and carboxylesterase A was characterized further. Carboxylesterase A activity was inhibited completely by 0.1 to 10 mM diisopropyl fluorophosphate and by 10 mM p-hydroxymercuribenzoate, but only slightly by lower concentrations of p-hydroxymercuribenzoate or by N-ethylmaleimide or iodoacetamide. The carboxylesterase A preparation also acted as a thioesterase with palmityl-CoA (palmityl-CoA hydrolase, EC 3.1.2.2), showing the following approximate relative activities: palmityl-CoA, 100; octanoyl-CoA, 90; methyl Glc2HD, 22; butyryl-CoA, 18; methyl AcGlc2HD, 15; methyl Ac2Glc2HD, 10; and acetyl-CoA, O. Methyl Ac2Glc2HD showed some substrate inhibition at higher concentrations, but neither methyl Ac2Glc2HD nor palmityl-CoA approached enzyme saturation until well above their critical micelle concentrations, indicating hydrolysis of the micellar substrate was occurring. The carboxylesterase and palmityl-CoA hydrolase activities were destroyed in a parallel fashion by heat denaturation, and each substrate inhibited the action of the preparation on the other substrate, but the preparation has not been purified sufficiently to establish with certainty that both activities reside in the same protein.  相似文献   

6.
Previous genetic studies have indicated that the type L α-glucan phosphorylase (Pho1) has an essential role during the initiation process of starch biosynthesis during rice seed development. To gain insight into its role in starch metabolism, we characterized the enzymatic properties of the Pho1 recombinant form. Pho1 has significantly higher catalytic efficiency toward both linear and branched α-glucans in the synthesis direction than in the degradation direction with equilibrium constants for the various substrates ranging from 13 to 45. Pho1 activity is strongly inhibited by its own reaction product (Pi) in the synthesis reaction (Ki = 0.69 mM) when amylopectin is the primer substrate, but this inhibition is less pronounced (Ki = 14.2 mM) when short α-glucan chains are used as primers. Interestingly, even in the presence of Pi alone, Pho1 not only degrades maltohexaose but also extends them to synthesize longer MOSs. Production of a broad spectrum of MOSs (G4-G19) was stimulated by both Pi and Glc1P in an additive fashion. Thus, even under physiological conditions of high Pi/Glc1P, Pho1 extends the chain length of short MOSs which can then be used as subsequent primer by starch synthase activities. As ADP-glucose strongly inhibits Pho1activity, Pho1 likely operates only during the initial stage and not during maturation phase of starch synthesis.  相似文献   

7.
Synthetic carbohydrate and glycoprotein mimics displaying sulfated saccharide residues have been assayed for their L-selectin inhibitory properties under static and flow conditions. Polymers displaying the L-selectin recognition epitopes 3',6-disulfo Lewis x(Glc) (3-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)-6-O-SO3-Glcbeta+ ++-OR) and 3',6'-disulfo Lewis x(Glc) (3, 6-di-O-SO3-Galbeta1alpha4(Fucalpha1alpha3)Glcbeta-OR) both inhibit L-selectin binding to heparin under static, cell-free binding conditions with similar efficacies. Under conditions of shear flow, however, only the polymer displaying 3',6-disulfo Lewis x(Glc) inhibits the rolling of L-selectin-transfected cells on the glycoprotein ligand GlyCAM-1. Although it has been shown to more effective than sialyl Lewis x at blocking the L-selectin-GlyCAM-1 interaction in static binding studies, the corresponding monomer had no effect in the dynamic assay. These data indicate that multivalent ligands are far more effective inhibitors of L-selectin-mediated rolling than their monovalent counterparts and that the inhibitory activities are dependent on the specific sulfation pattern of the recognition epitope. Importantly, our results indicate the L-selectin specificity for one ligand over another found in static, cell-free binding assays is not necessarily retained under the conditions of shear flow. The results suggest that monovalent or polyvalent carbohydrate or glycoprotein mimetics that inhibit selectin binding in static assays may not block the more physiologically relevant process of selectin-mediated rolling.  相似文献   

8.
The binding properties of Pseudomonas aeruginosa agglutinin-I (PA-IL) with glycoproteins (gps) and polysaccharides were studied by both the biotin/avidin-mediated microtiter plate lectin-binding assay and the inhibition of agglutinin-glycan interaction with sugar ligands. Among 36 glycans tested for binding, PA-IL reacted best with two glycoproteins containing Galalpha1-->4Gal determinants and a human blood group ABO precursor equivalent gp, but this lectin reacted weakly or not at all with A and H active gps or sialylated gps. Among the mammalian disaccharides tested by the inhibition assay, the human blood group Pkactive Galalpha1-->4Gal, was the best. It was 7.4-fold less active than melibiose (Galalpha1-->6Glc). PA-IL has a preference for the alpha-anomer in decreasing order as follows: Galalpha1-->6 >Galalpha1-->4 >Galalpha1-->3. Of the monosaccharides studied, the phenylbeta derivatives of Gal were much better inhibitors than the methylbeta derivative, while only an insignificant difference was found between the Galalpha anomer of methyl- and p -NO2-phenyl derivatives. From these results, it can be concluded that the combining size of the agglutinin is as large as a disaccharide of the alpha-anomer of Gal at nonreducing end and most complementary to Galalpha1-->6Glc. As for the combining site of PA-IL toward the beta-anomer, the size is assumed to be less than that of Gal; carbon-6 in the pyranose form is essential, and hydrophobic interaction is important for binding.   相似文献   

9.
10.
A novel β-glucosidase (G-II) was purified to homogeneity from a culture filtrate of the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). G-II specifically cleaved the β-(1  6)-glucosidic linkage at the C-20 site of ginsenoside Rb1 to produce ginsenoside Rd, but did not hydrolyze the other β-d-glucosidic linkages in protopanaxadiol-type ginsenosides. In specificity tests, G-II was active against pNPG and disaccharides such as cellobiose and gentiobiose, but exhibited very low activities against other aryl-glycosides and methyl-α-glycosides. G-II consisted of two identical subunits with a native molecular mass of 180 kDa and a pI of 4.4. The optimal pH of G-II was pH 5.5, and the enzyme was highly stable over a range of pH 5.0–11.0. The optimal temperature was 45 °C, and the enzyme became unstable at temperatures above 40 °C. The Km and Vmax values against pNPG were 0.19 mM and 57.7 μmol/(min mg), respectively. The enzyme was inhibited by Zn2+, Cu2+ (over 50 mM) and SDS (250 mM). However, the inhibition by SDS was partially reversed by 10 mM dithiothreitol. Three oligopeptide fragments obtained after enzymatic digestion of G-II were sequenced by nanoESI-MS/MS. The amino acid sequence homology analysis showed that G-II possessed significant homology with the family 3 β-glucosidases.  相似文献   

11.
Glucosidase II (Glc'ase II) is a glycan-processing enzyme that trims two alpha1,3-linked Glc residues in succession from the glycoprotein oligosaccharide Glc2Man9GlcNAc2 to give Glc1Man9GlcNAc2 and Man9GlcNAc2 in the endoplasmic reticulum (ER). Monoglucosylated glycans, such as Glc1-Man9GlcNAc2, generated by this process play a key role in glycoprotein quality control in the ER, because they are primary ligands for the lectin chaperones calnexin (CNX) and calreticulin (CRT). A precise analysis of the substrate specificity of Glc'ase II is expected to further our understanding of the molecular basis to glycoprotein quality control, because Glc'ase II potentially competes with CNX/CRT for the same glycans, Glc1Man7-9GlcNAc2. In this study, a quantitative analysis of the specificity of Glc'ase II using a series of structurally defined synthetic glycans was carried out. In the presence of CRT, Glc'ase II-mediated trimming from Glc2Man9GlcNAc2 stopped at Glc1Man9GlcNAc2, supporting the notion that the glycan structure delivered to the CNX/CRT cycle is Glc1Man9GlcNAc2. Unexpectedly, our experiments showed that Glc1Man8(B)GlcNAc2 had nearly the same reactivity as Glc1Man9GlcNAc2, which was markedly greater than that of its positional isomer Glc1Man8(C)GlcNAc2. An analysis with glycoprotein-like probes revealed the stepwise formation of Glc1Man9GlcNAc2 and Man9GlcNAc2 from Glc2Man9GlcNAc2, even in the presence of CRT. It was also shown that Glc1Man8(B)GlcNAc2 had even greater reactivity than Glc1Man9GlcNAc2 at the glycoprotein level. Moreover, inhibitory activities by nonglucosylated glycans suggested that Glc'ase II recognized the C arm (Manalpha1, 2Manalpha1, 6Man-) of high mannose-type glycans.  相似文献   

12.
The in situ and in vitro regulation of nitrate reductase (NR; EC 1.6.6.1) activity by glucose (Glc) and glucose‐6‐phosphate (Glc‐6P) was studied in leaf segments of 7‐day‐old corn plants. In situ, Glc and Glc‐6P not only prevented NR inactivation, but also slightly activated the enzyme relative to that in fresh attached leaves in the light. Glc and Glc‐6P also reactivated NR that had previously been inactivated by incubating the segments for 30 min in the dark. Sugars were effective, even in the presence of cycloheximide, but not of cantharidin, an inhibitor of type 2A phosphoprotein phosphatase (PP2A). In segments kept in the dark, the inhibition of protein dephosphorylation by cantharidin showed that the phosphorylation of NR was not inhibited by either Glc or Glc‐6P, as the enzyme was inactivated to the same extent whether or not sugars (P) were present in the incubation medium. In vitro, as in situ, neither Glc nor Glc‐6P could prevent NR phosphorylation. In spite of some reports showing that sugar‐phosphates can act on kinases and prevent NR phosphorylation, the results presented here suggest that, in corn leaves, sugars and their phosphorylated derivatives probably activate NR in situ mainly by inducing protein dephosphorylation. The incubation of crude extract in a water bath at 27°C for 45 min resulted in the activation of NR that was blocked by cantharidin, but was not increased by either Glc or Glc‐6P. This result suggests that the presence of another metabolite(s) and the maintenance of cell functionality may be necessary for the sugar‐induced activation of NR. A sugar‐triggered signalling pathway independent of protein synthesis may be involved in the process. l ‐Glc and 6‐deoxyglucose were ineffective in reactivating NR in darkened segments, whilst 2‐deoxyglucose was as effective as Glc itself. The effect of sugar analogues shows that, although Glc has to enter the cell and be phosphorylated to activate NR, further metabolism is not necessary. As sugar‐phosphates, such as Glc‐6P and fructose‐6‐phosphate (Fru‐6P), also activate NR, it seems that hexokinases are not involved in the pathway that leads to the in situ dephosphorylation of NR. In vitro, Glc‐6P mildly but rapidly activated NR by a mechanism insensitive to cantharidin. The addition of an increasing concentration of Mg2+ to crude extract containing Glc‐6P increased the Mg2+ inhibition of NR. This result suggests that the hexose‐phosphate does not prevent Mg2+ association with NR. It is possible that Glc‐6P activates NR in vitro by inducing the dissociation of 14‐3‐3 from the phospho‐NR (pNR)/Mg/14‐3‐3 complex.  相似文献   

13.
The effect of castanospermine on the processing of N-linked oligosaccharides was examined in the parent mouse lymphoma cell line and in a mutant cell line that lacks glucosidase II. When the parent cell line was grown in the presence of castanospermine at 100 micrograms/ml, glucose-containing high-mannose oligosaccharides were obtained that were not found in the absence of inhibitor. These oligosaccharides bound tightly to concanavalin A-Sepharose and were eluted in the same position as oligosaccharides from the mutant cells grown in the absence or presence of the alkaloid. The castanospermine-induced oligosaccharides were characterized by gel filtration on Bio-Gel P-4, by h.p.l.c. analysis, by enzymic digestions and by methylation analysis of [3H]mannose-labelled and [3H]galactose-labelled oligosaccharides. The major oligosaccharide released by endoglucosaminidase H in either parent or mutant cells grown in castanospermine was a Glc3Man7GlcNAc, with smaller amounts of Glc3Man8GlcNAc and Glc3Man9GlcNAc. On the other hand, in the absence of castanospermine the mutant produces mostly Glc2Man7GlcNAc. In addition to the above oligosaccharides, castanospermine stimulated the formation of an endoglucosaminidase H-resistant oligosaccharide in both cell lines. This oligosaccharide was characterized as a Glc2Man5GlcNAc2 (i.e., Glc(1,2)Glc(1,3)Man(1,2)Man(1,2)Man(1,3)[Man(1,6)]Man-GlcNAc-GlcNAc). Castanospermine was tested directly on glucosidase I and glucosidase II in lymphoma cell extracts by using [Glc-3H]Glc3Man9GlcNAc and [Glc-3H]Glc2Man9GlcNAc as substrates. Castanospermine was a potent inhibitor of both activities, but glucosidase I appeared to be more sensitive to inhibition.  相似文献   

14.
In plant cells, the reversible isomerization between fructose 6-phosphate (Fru6P) and glucose 6-phosphate (Glc6P) is catalyzed by a cytosolic and a chloroplastic isoenzyme of phosphoglucose isomerase (PGI, EC 5.3.1.9). The extractable activities of both PGI isoenzymes are in large excess compared with the flux required for product synthesis, but the measured Glu6P/Fru6P ratio in illuminated chloroplasts and in whole leaves is always displaced from equilibrium. Cytosolic (PGI 2) and stromal (PGI 1) isoenzymes were purified from spinach leaves and used to investigate the possibility of metabolic regulation at this step. Several metabolites were found to inhibit PGI, but within the physiological concentration range, only erythrose 4-phosphate (Ery4P) inhibited significantly. The inhibition was competitive, with Ki values below 10 μM for PGI 2 and 1. The physiological significance of the inhibition of PGI by Ery4P was assessed in isolated intact spinach chloroplasts. We conclude that, in vivo, this inhibition is probably responsible for the observed displacement from equilibrium in the chloroplasts, but limits the carbon flow towards starch synthesis only when Fru6P is low. In contrast, the inhibition by Ery4P is unlikely to play any role in the cytosolic carbon metabolism because both Fru6P concentration and PGI activity, are much higher than in the chloroplast stroma.  相似文献   

15.
Thirteen glucose analogues bearing electrophilic groups were synthesized (five of them for the first time) and screened as inhibitors of the glucose transporter (EIIGlc) of the Escherichia coli phosphoenolpyruvate-sugar phosphotransferase system (PTS). 2',3'-Epoxypropyl beta-d-glucopyranoside (3a) is an inhibitor and also a pseudosubstrate. Five analogues are inhibitors of nonvectorial Glc phosphorylation by EIIGlc but not pseudosubstrates. They are selective for EIIGlc as demonstrated by comparison with EIIMan, another Glc-specific but structurally different transporter. 3a is the only analogue that inhibits EIIGlc by binding to the high-affinity cytoplasmic binding site and also strongly inhibits sugar uptake mediated by this transporter. The most potent inhibitor in vitro, methyl 6,7-anhydro-d,l-glycero-alpha-d-gluco-heptopyranoside (1d), preferentially interacts with the low-affinity cytoplasmic site but only weakly inhibits Glc uptake. Binding and/or phosphorylation from the cytoplasmic side of EIIGlc is more permissive than sugar binding and/or translocation of substrates via the periplasmic site. EIIGlc is rapidly inactivated by the 6-O-bromoacetyl esters of methyl alpha-d-glucopyranoside (1a) and methyl alpha-d-mannopyranoside (1c), methyl 6-deoxy-6-isothiocyanato-alpha-d-glucopyranoside (1e), beta-d-glucopyranosyl isothiocyanate (3c) and beta-d-glucopyranosyl phenyl isothiocyanate (3d). Phosphorylation of EIIGlc protects, indicating that inactivation occurs by alkylation of Cys421. Glc does not protect, but sensitizes EIIGlc for inactivation by 1e and 3d, which is interpreted as the effect of glucose-induced conformational changes in the dimeric transporter. Glc also sensitizes EIIGlc for inactivation by 1a and 1c of uptake by starved cells. This indicates that Cys421 which is located on the cytoplasmic domain of EIIGlc becomes transiently accessible to substrate analogues on the periplasmic side of the transporter.  相似文献   

16.
We have established a unique enzymatic approach for obtaining sulfated disaccharides using Bacillus circulans beta-D-galactosidase-catalyzed 6-sulfo galactosylation. When 4-methyl umbelliferyl 6-sulfo beta-D-galactopyranoside (S6Gal beta-4MU) was used as a donor, the enzyme induced transfer of 6-sulfo galactosyl residue to GlcNAc acceptor. As a result, the desired compound 6'-sulfo N-acetyllactosamine (S6Gal beta1-4GlcNAc) and its positional isomer 6'-sulfo N-acetylisolactosamine (S6Gal beta1-6GlcNAc) were observed by HPAEC-PAD, in 49% total yield based on the donor added, and in a molar ratio of 1:3.5. With a glucose acceptor, the regioselectivity was substantially changed and S6Gal beta1-2Glc was mainly produced along with beta-(1-1)alpha, beta-(1-3), beta-(1-6) isomers in 74% total yield. When methyl alpha-D-glucopyranoside (Glc alpha-OMe) was an acceptor, the enzyme also formed mainly S6Gal beta1-2Glc alpha-OMe with its beta-(1-6)-linked isomer in 41% total yield based on the donor added. In both cases, it led to the predominant formation of beta-(1-2)-linked disaccharides. In contrast, with the corresponding methyl beta-D-glucopyranoside (Glc beta-OMe) acceptor, S6Gal beta1-3Glc beta-OMe and S6Gal beta1-6Glc beta-OMe were formed in a low total yield of 12%. These results indicate that the regioselectivity and efficiency on the beta-D-galactosidase-mediated transfer reaction significantly depend on the anomeric configuration in the glucosyl acceptors.  相似文献   

17.
L-phenylalanine (L-Phe) is an aromatic amino acid with diverse commercial applications. Technologies for industrial microbial synthesis of L-Phe using glucose as a starting raw material currently achieve a relatively low conversion yield (Y(Phe/Glc)). The purpose of this work was to study the effect of PTS (phosphotransferase transport system) inactivation and overexpression of different versions of feedback inhibition resistant chorismate mutase-prephenate dehydratase (CM-PDT) on the yield (Y(Phe/Glc)) and productivity of L-Phe synthesized from glucose. The E. coli JM101 strain and its mutant derivative PB12 (PTS(-)Glc(+) phenotype) were used as hosts. PB12 has an inactive PTS, but is capable of transporting and phosphorylating glucose by using an alternative system constituted by galactose permease (GalP) and glucokinase activities (Glk). JM101 and PB12 were transformed with three plasmids, harboring genes that encode for a feedback inhibition resistant DAHP synthase (aroG(fbr)), transketolase (tktA) and either a truncated CM-PDT (pheA(fbr)) or its derived evolved genes (pheA(ev1) or pheA(ev2)). Resting-cells experiments with these engineered strains showed that JM101 and PB12 strains expressing either pheA(ev1) or pheA(ev2) genes produced l-Phe from glucose with Y(Phe/Glc) of 0.21 and 0.33 g/g, corresponding to 38 and 60% of the maximum theoretical yield (0.55 g/g), respectively. In addition, in both engineered strains the reached q(Phe) high levels of 40 mg/g-dcw.h. The metabolic engineering strategy followed in this work, including a strain with an inactive PTS, resulted in a positive impact over the Y(Phe/Glc), enhancing it nearly 57% compared with its PTS(+) counterpart. This is the first report wherein PTS inactivation was a successful strategy to improve the Y(Phe/Glc).  相似文献   

18.
Starch synthesis and CO2 evolution were determined after incubating intact and lysed wheat (Triticum aestivum L. cv. Axona) endosperm amyloplasts with 14C-labelled hexose-phosphates. Amyloplasts converted [U-14C]glucose 1-phosphate (Glc1P) but not [U-14C]glucose 6-phosphate (Glc6P) into starch in the presence of ATP. When the oxidative pentose-phosphate pathway (OPPP) was stimulated, both [U-14C]Glc1P and [U-14C]Glc6P were metabolized to CO2, but Glc6P was the better precursor for the OPPP, and Glc1P-mediated starch synthesis was reduced by 75%. In order to understand the basis for the partitioning of carbon between the two potentially competing metabolic pathways, metabolite pools were measured in purified amyloplasts under conditions which promote both starch synthesis and carbohydrate oxidation via the OPPP. Amyloplasts incubated with Glc1P or Glc6P alone showed little or no interconversion of these hexose-phosphates inside the organelle. When amyloplasts were synthesizing starch, the stromal concentrations of Glc1P and ADP-glucose were high. By contrast, when flux through the OPPP was highest, Glc1P and ADP-glucose inside the organelle were undetectable, and there was an increase in metabolites involved in carbohydrate oxidation. Measurements of the plastidial hexose-monophosphate pool during starch synthesis and carbohydrate oxidation indicate that the phosphoglucose isomerase reaction is at equilibrium whereas the reaction catalysed by phosphoglucomutase is significantly displaced from equilibrium. Received: 29 March 1997 / Accepted: 5 June 1997  相似文献   

19.
Seed germination is sensitive to glucose (Glc), nitric oxide (NO) and polyamine (PA). To elucidate whether cross-talk among Glc, NO and PAs occurs in mediation of seed germination, effects of Glc, NO and spermine on seed germination of Lotus japonicus were studied. Glc retarded seed germination in a concentration-dependent manner. NO donor sodium nitroprusside (SNP) alleviated Glc-induced inhibition of seed germination, whereas the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO) diminished the SNP-dependent alleviation of seed germination. These observations indicate that Glc may inhibit seed germination by interacting with NO signaling pathways. Exogenous spermine enhanced and the inhibitor of the spermine synthase, methylglyoxal-bis-guanyl hydrazone (MGBG), inhibited seed germination, respectively. Like SNP, spermine alleviated the Glc-induced inhibition of seed germination, whereas MGBG exaggerated the Glc-induced inhibition of seed germination. These results suggest that Glc may inhibit the spermine synthesis, leading to reductions in seed germination. NO scavenger and spermine synthase inhibitor diminished the SNP-induced alleviation of Glc-induced inhibition of seed germination. These findings reveal that both NO and spermine participate in the Glc-induced inhibition of seed germination in L. japonicus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号