首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of 1,2,3 triazole compounds possessing 1,2,4 oxadiazole ring were efficiently synthesized. Synthesized compounds were evaluated for their in vitro antifungal activities using standard cup plate method. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Compound 11a from the series was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus flavus (MIC-10) whereas equipotent with miconazole against Fusarium oxysporum (MIC-25) and Aspergillus niger (MIC-12.5). Also compound 11h was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus niger (MIC-10) and equipotent with miconazole against Fusarium oxysporum. Compound 11h was equipotent with fluconazole against Aspergillus niger (MIC-10).  相似文献   

2.
Focus in this Letter is made to design and synthesize a series of nineteen new 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues employing click chemistry and evaluated for their anti-tubercular activity against Mycobacterium tuberculosis H37Rv. Among the tested compounds, 7f and 7j exhibited good activity (MIC = 3.125 μg/mL), while 8a displayed excellent activity (MIC = 1.56 μg/mL) against the growth of M. tuberculosis H37Rv. In addition, 7f, 7j and 8a compounds were subjected to cytotoxic studies against mouse macrophage (RAW264.7) cell lines and the selectivity index values are >15 indicating suitability of compounds for further drug development.  相似文献   

3.
In this research, a series of 4-(1,2,3-triazol-1-yl)coumarin conjugates were synthesized and their anticancer activities were evaluated in vitro against three human cancer cell lines, including human breast carcinoma MCF-7 cell, colon carcinoma SW480 cell and lung carcinoma A549 cell. To increase the biological potency, structural optimization campaign was conducted focusing on the C-4 position of 1,2,3-triazole and the C-6, C-7 positions of coumarin. In addition, to further evaluate the role of 1,2,3-triazole and coumarin for antiproliferative activity, 9 compounds possessing 4-(piperazin-1-yl)coumarin framework and 3 derivatives baring quinoline core were also synthesized. By MTT assay in vitro, most of the compounds display attractive antitumor activities, especially 23. Further flow cytometry assays demonstrate that compound 23 exerts the antiproliferative role through arresting G2/M cell-cycle and inducing apoptosis.  相似文献   

4.
In the present work, we report a new class of potent steroid sulphatase (STS) inhibitors based on 6-(1-phenyl-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate derivatives. Within the set of new STS inhibitors, 6-(1-(1,2,3-trifluorophenyl)-1H-1,2,3-triazol-4-yl)naphthalen-2-yl sulphamate 3L demonstrated the highest activity in the enzymatic assay inhibiting the STS activity to 7.98% at 0.5 µM concentration. Furthermore, to verify whether the obtained STS inhibitors are able to pass through the cellular membrane effectively, cell line experiments have been carried out. We found that the lowest STS activities were measured in the presence of compound 3L (remaining STS activity of 5.22%, 27.48% and 99.0% at 100, 10 and 1 nM concentrations, respectively). The measured STS activities for Irosustat (used as a reference) were 5.72%, 12.93% and 16.83% in the same concentration range. Moreover, a determined IC50 value of 15.97 nM for 3L showed that this compound is a very promising candidate for further preclinical investigations.  相似文献   

5.
A series of novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl]podophyllotoxin derivatives were synthesized by employing Cu(I)-catalyzed click chemistry and evaluated for their anticancer activity against a panel of seven human cancer cell lines (HT-29, HCT-15, 502713, HOP-62, A-549, MCF-7, and SF-295). The compounds 9b, 9c, 9e, 9f, and 9h showed significant cytotoxic activities especially against HT-29, HCT-15, 502713 cell lines.  相似文献   

6.
A series of N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamides (4) was synthesized and tested for their anticancer activity against a panel of 60 human cancer cell lines. Some of the representative compounds such as 4a, 4b, 4f, 4g, 4i and 4t were selected for the five dose study and amongst them 4g and 4i displayed significant anticancer activity with GI50 values ranging from 0.25 to 8.34 and 1.42 to 5.86 μM, respectively. Cell cycle analysis revealed that these compounds induced cell cycle arrest at G2/M phase in MCF-7 cells. The most active compound in this series 4g also inhibited tubulin polymerization with IC50 value 1.93 μM superior to that of E7010. Moreover, assay to investigate the effect on caspase-9, Hoechst staining and DNA fragmentation analysis suggested that these compounds induced cell death by apoptosis. Docking experiments showed that they interact and bind efficiently with tubulin protein. Overall, the results demonstrate that N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)nicotinamide scaffold possess anticancer property by inhibiting the tubulin polymerization.  相似文献   

7.
A library of 1-benzyl-N-(2-(phenylamino)pyridin-3-yl)-1H-1,2,3-triazole-4-carboxamides (7a–al) have been designed, synthesized and screened for their anti-proliferative activity against some selected human cancer cell lines namely DU-145, A-549, MCF-7 and HeLa. Most of them have shown promising cytotoxicity against lung cancer cell line (A549), amongst them 7f was found to be the most potent anti-proliferative congener. Furthermore, 7f exhibited comparable tubulin polymerization inhibition (IC50 value 2.04 µM) to the standard E7010 (IC50 value 2.15 µM). Moreover, flow cytometric analysis revealed that this compound induced apoptosis via cell cycle arrest at G2/M phase in A549 cells. Induction of apoptosis was further observed by examining the mitochondrial membrane potential and was also confirmed by Hoechst staining as well as Annexin V-FITC assays. Furthermore, molecular docking studies indicated that compound 7f binds to the colchicine binding site of the β-tubulin. Thus, 7f exhibits anti-proliferative properties by inhibiting the tubulin polymerization through the binding at the colchicine active site and by induction of apoptosis.  相似文献   

8.
1H-[1,2,3]-Triazol-1-yl mannosides have been synthesized as inhibitors for the beta-galactoside-binding family of galectin proteins. Easier synthetic access to C1 in mannose, as compared to C3 in galactose, for attachment of affinity-enhancing triazoles rendered a synthetic advantage. The best mannose-derived inhibitor for galectin-9N, 4-benzylaminocarbonyl-1H-[1,2,3]-triazol-1-yl beta-D-mannopyranoside, had a Kd value of 540 microM, which compares favorably with its galactoside counterpart (Kd=670 microM) and with LacNAc (Kd=500 microM).  相似文献   

9.
Extracellular adenosine 5′-triphosphate (ATP) triggers the P2X7 receptor (P2X7R) ionic channel to stimulate the release of the interleukin-IL-1β cytokine into macrophages. The current study explored the reaction of six structurally diverse triazole derivatives on P2X7-mediated dye uptake into murine peritoneal macrophages. P2X7R activity determined by ATP-evoked fluorescent dye uptake. Triazole derivatives toxicity measured using dextran rhodamine exclusion based colorimetric assay. A740004 and BBG, both P2X7R antagonist, inhibited ATP-induced dye uptake. In contrast, the derivatives 5a, 5b, 5e, and 5f did not diminish P2X7R activity in concentrations until 100?µM. 5c and 5d analogs caused a potent inhibitory activity on P2X7-induced dye uptake. Dextran Rhodamine exclusion measurements after 24?h of continuous treatment with triazole derivatives indicated a moderated toxicity for all molecules. In conclusion, this study showed that a series of new hybrid 1,2,3-triazolic naphthoquinones reduces P2X7R-induced dye uptake into murine macrophages. In silico analysis indicates a good pharmacokinetic profile and molecular docking results of these analogs indicate the potential to bind into an allosteric site located into the P2X7R pore and juxtaposed with the ATP binding pocket. In this manner, the compounds 5c and 5d may be used as a scaffold for new P2X7R inhibitors with reduced toxicity, and good anti-inflammatory activity.  相似文献   

10.
Ciprofloxacin (CP), an antibiotic has been shown to have antiproliferative and apoptotic activities in several cancer cell lines. Moreover, several reports have highlighted the interest of increasing the lipophilicity to improve the antitumor efficacy. These studies have led us to synthesize new CP derivatives of various lipophilicities and to evaluate their activity in five human cancer cell lines. With an easy and cost-efficient procedure, 31 7-((4-substituted)piperazin-1-yl) derivatives of CP were prepared that displayed IC50 values ranging from μM to mM concentrations and are non-toxic in vivo in healthy mice as shown by their maximal tolerated dose (MTD) indices >80 mg/kg. Several derivatives displayed higher in vitro antitumor activity than parent CP however this was not dependent on the lipophilicity of the substituent. Among all synthesized derivatives, the most potent were 2 and 6h whose IC50 values were ?10 μM in three (derivative 2) or four (derivative 6h) cancer cell lines.  相似文献   

11.
A series of 1-(N-benzylamino)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propan-2-ols 6a-c, 7a-c, 8a, and 9a were prepared in five steps and evaluated for their antifungal activity. The most active compound 7b was docked into a home-made 3D model of the targeted enzyme confirming the importance of Tyr118, His377, and Ser378 residues in its binding mode.  相似文献   

12.
A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC50 values of 0.6 μM and 0.8 μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies.  相似文献   

13.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

14.
A series of 3-alkyl-4-phenylethylidenamino- (8) and 3-alkyl-4-(3-phenylallylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (9) was synthesized from the reaction of the corresponding 3-alkyl(aryl)-4-amino-4,5-dihydro-1H-1,2,4-triazol-5-ones (1), with phenylacetaldehyde and cinnamaldehyde. 3-Alkyl-4-(2-phenylethylamino)- (10) and 3-alkyl-4-(3-phenylpropylamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (11) were obtained from the selective reduction of compounds (8) and (9) with NaBH4. The in vitro antitumor activity of the novel compounds was screened and the highest inhibition of tree tumor cell lines was observed for the compounds containing phenylethylenamino and phenylethylamino groups at position 4 of 1,2,4-triazol ring.  相似文献   

15.
The synthesis of new 3'-deoxy-3'-[4-(pyrimidin-1-yl)methyl-1,2,3-triazol-1-yl]-thymidine 6a-f, from 3'-azido-3'-deoxy-5'-O-monomethoxytrityl-thymidine is described. The key step is the 1,3-dipolar cycloaddition between the azido group of the protected AZT 3 and N-1-propargylpyrimidine derivatives 2a-f. All new derivatives 6a-f were evaluated for their inhibitory effects against the replication of HIV-1 (IIIB), HIV-2 (ROD). No marked activity was found.  相似文献   

16.
Autophagy is considered as an important cell death mechanism that closely interacts with other common cell death programs like apoptosis. Critical role of autophagy in cell death makes it a promising, yet challenging therapeutic target for cancer. We identified a series of 1,2,3-triazole analogs having significant breast cancer inhibition property. Therefore, we attempted to study whether autophagy and apoptosis were involved in the process of cancer cell inhibition. The lead molecule, 1-(1-benzyl-5-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)-2-(4-bromophenylamino)-1-(4-chlorophenyl)ethanol (T-12) induced significant cell cycle arrest, mitochondrial membrane depolarization, apoptosis and autophagy in MCF-7 and MDA-MB-231 cells. T-12 increased reactive oxygen species and its inhibition by N-acetyl-l-cysteine protected breast cancer cells from autophagy and apoptosis. Autophagy inhibitor, 3-methyladenine abolished T-12 induced apoptosis, mitochondrial membrane depolarization and reactive oxygen species generation. This suggested that T-12 induced autophagy facilitated cell death rather than cell survival. Pan-caspase inhibition did not abrogate T-12 induced autophagy, suggesting that autophagy precedes apoptosis. In addition, T-12 inhibited cell survival pathway signaling proteins, Akt, mTOR and Erk1/2. T-12 also induced significant regression of tumor with oral dose of as low as 10 mg/kg bodyweight in rat mammary tumor model without any apparent toxicity. In presence of reactive oxygen species inhibitor (N-acetyl-l-cysteine) and autophagy inhibitor (chloroquine), T-12 induced tumor regression was significantly decreased. In conclusion, T-12 is a potent inducer of autophagy-dependent apoptosis in breast cancer cells both in vitro and in vivo and can serve as an important lead in development of new anti-tumor therapy.  相似文献   

17.
To identify novel glycine transporter 1(GlyT1) inhibitors with greater selectivity relative to GlyT2 and improved aqueous solubility, we synthesized a series of 4H-1,2,4-triazole derivatives with heteroaromatic rings at the 4-position and investigated their structure-activity relationships. Replacement of the 2-fluorophenyl group of lead compound 5 with various aromatic groups led to the identification of 5-(3-biphenyl-4-yl-5-ethyl-4H-1,2,4-triazol-4-yl)isoquinoline (15) with 38-fold selectivity between GlyT1 and GlyT2. 15 also showed improved aqueous solubility and in vivo efficacy on (+)-HA966-induced hyperlocomotion in mice over the lead compound.  相似文献   

18.
A new series of 3-(1,2,4-triazol-3-yl)-4-thiazolidinone derivatives has been synthesized by the reaction of Schiff bases of 3-amino-1,2,4-triazoles with mercaptoacetic acid and 2-mercaptopropionic acid. Their antibacterial and antifungal activities were evaluated against S. aureus, S. epidermidis, C. albicans and C. glabrata  相似文献   

19.
A series of substituted 3-(benzylthio)-5-(1H-indol-3-yl)-4H-1,2,4-triazol-4-amines has been synthesised and tested in vitro as potential pro-apoptotic Bcl-2-inhibitory anticancer agents. Synthesis of the target compounds was readily accomplished in good yields through a cyclisation reaction between indole-3-carboxylic acid hydrazide and carbon disulfide under basic conditions, followed by S-benzylation. Active compounds, such as the nitrobenzyl analogue 6c, were found to exhibit sub-micromolar IC50 values in Bcl-2 expressing human cancer cell lines. Molecular modelling and ELISA studies further implicated anti-apoptotic Bcl-2 as a candidate molecular target underpinning anticancer activity.  相似文献   

20.
As the most abundant heat shock protein (HSP), Hsp90 is actively involved in tumor cell growth and various responses to anti-carcinogenic stress. Hsp90 has thus emerged as a potential drug target. A structure-based drug design approach was applied to develop novel resorcinolyltriazole derivatives as Hsp90 inhibitors. Structure-activity relationships (SARs) and molecular docking were investigated to provide a rationale for binding affinity and paralog selectivity. Click chemistry between iodoethynylresorcinol and an azido derivative was used to synthesize a new family of 2-((4-resorcinolyl)-5-aryl-1,2,3-triazol-1-yl) acetates that exhibited Hsp90 binding affinities of 40–100 nM (IC50). Among the synthesized molecules, the triazole alkyl acetates displayed the highest Hsp90 binding affinities. Their potency against Hsp90 was over 100-fold stronger than against TRAP1 and 1–3-fold stronger than against Grp94. In particular, compounds 18, 19, and 30 had Hsp90 inhibitory activities of ~45 nM (IC50) and they displayed over 350-fold selectivity for Hsp90 over TRAP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号