首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based upon the structures of some known 5-LOX inhibitors, a set of five compounds carrying appropriate substituents at N-1 and C-3 of indole were synthesized and investigated for 5-LOX inhibitory activities. Fifty percent inhibitory concn (IC50) of these compounds ranges from 0.6 to 5 μM and found to be comparable to that of clinically used 5-LOX inhibitor, zileuton. The compounds under present investigations exhibited appreciable interactions with 5-LOX as apparent from their association constants calculated from the mass spectral data. Compound 5a with a tosyl group at N-1 and pyrolidinyl-1,2-dione substituent at C-3 of indole, exhibiting IC50 0.6 μM and stoichiometry of 1:7 in the enzyme–compound complex was identified as highly potent 5-LOX inhibitor and seems to be suitable for further investigations.  相似文献   

2.
A hitherto unknown class of linear acetylene regioisomers were designed such that a SO2Me or SO2NH2 group was located at the ortho-, meta- or para-position of the acetylene C-1 phenyl ring, and a N-difluoromethyl-1,2-dihydropyridin-2-one moiety was attached via its C-5 position to the C-2 position on an acetylene template (scaffold). All three SO2Me regioisomers, and the 4-SO2NH2 analog, were potent inhibitors of 5-lipoxygenase (5-LOX IC50 = 3.2–3.5 μM range) relative to the reference drug caffeic acid (IC50 = 4.0 μM). The SO2Me regioisomers exhibited weak cyclooxygenease-1 (COX-1) and -2 (COX-2) inhibitory activity with a modest COX-2 selectivity index. The most potent 3-SO2Me, 4-SO2Me and 4-SO2NH2 compounds, with respective ED50 values of 66.1, 68.5 and 86.5 mg/kg po, exhibited comparable oral anti-inflammatory (AI) activity to that of the reference drug ibuprofen (ED50 = 67.4 mg/kg po). The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel pharmacophore for the design of cyclic hydroxamic mimetics capable of inhibiting 5-LOX for exploitation in the development of 5-LOX inhibitory AI drugs.  相似文献   

3.
5-Lipoxygenase (5-LOX) is important enzyme in the biosynthesis of leukotrienes, and is a potential target in the treatment of asthma and allergy. We designed and synthesized a series of benzoxazoles and benzothiazoles as 5-LOX inhibitors. Fourteen compounds prepared showed the inhibition of LTC4 formation with IC50 value of 0.12–23.88 μM. Also two compounds 2d and 2g showed improved airway hypersensitiveness.  相似文献   

4.
In the present study we have discovered compound 1, a benzo[1.3.2]dithiazolium ylide-based compound, as a new prototype dual inhibitor of cyclooxygenase (COX) and 5-lipoxygenase (5-LOX). Compound 1 was initially discovered as a COX-2 inhibitor, resulting indirectly from the COX-2 structure-based virtual screening that identified compound 2 as a virtual hit. Compounds 1 and 2 inhibited COX-1 and COX-2 in mouse macrophages with IC50 in the range of 1.5–18.1 μM. Both compounds 1 and 2 were also found to be potent inhibitors of human 5-LOX (IC50 = 1.22 and 0.47 μM, respectively). Interestingly, compound 1 also had an inhibitory effect on tumor necrosis factor-α (TNF-α) production (IC50 = 0.44 μM), which was not observed with compound 2. Docking studies suggested the (S)-enantiomer of 1 as the biologically active isomer that binds to COX-2. Being a cytokine-suppressive dual COX/5-LOX inhibitor, compound 1 may represent a useful lead structure for the development of advantageous new anti-inflammatory agents.  相似文献   

5.
In our previous study, we designed a series of pyrazole derivatives as novel COX-2 inhibitors. In order to obtain novel dual inhibitors of COX-2 and 5-LOX, herein we designed and synthesized 20 compounds by hybridizing pyrazole with substituted coumarin who was reported to exhibit 5-LOX inhibition to select potent compounds using adequate biological trials sequentially including selective inhibition of COX-2 and 5-LOX, anti-proliferation in vitro, cells apoptosis and cell cycle. Among them, the most potent compound 11g (IC50 = 0.23 ± 0.16 μM for COX-2, IC50 = 0.87 ± 0.07 μM for 5-LOX, IC50 = 4.48 ± 0.57 μM against A549) showed preliminary superiority compared with the positive controls Celecoxib (IC50 = 0.41 ± 0.28 μM for COX-2, IC50 = 7.68 ± 0.55 μM against A549) and Zileuton (IC50 = 1.35 ± 0.24 μM for 5-LOX). Further investigation confirmed that 11g could induce human non-small cell lung cancer A549 cells apoptosis and arrest the cell cycle at G2 phase in a dose-dependent manner. Our study might contribute to COX-2, 5-LOX dual inhibitors thus exploit promising novel cancer prevention agents.  相似文献   

6.
A series of 6-nitro-3-(m-tolylamino) benzo[d]isothiazole 1,1-dioxide analogues were synthesized and evaluated for their inhibition activity against 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES-1). These compounds can inhibit both enzymes with IC50 values ranging from 0.15 to 23.6 μM. One of the most potential compounds, 3g, inhibits 5-LOX and mPGES-1 with IC50 values of 0.6 μM, 2.1 μM, respectively.  相似文献   

7.
This Letter describes an efficient approach by integrating virtual screening with bioassay technology for finding small organic inhibitors targeting β-secretase (BACE-1). Fifteen hits with inhibitory potencies ranging from 2.8 to 118 μM (IC50) against β-secretase were successfully identified. Compound 12 with IC50 of 2.8 μM is the most potent hit against BACE-1. Docking simulation from gold 3.0 suggests putative binding mode of 12 in BACE-1 and potential key pharmacophore groups for further designing of non-peptide compounds as more powerful inhibitors against BACE-1.  相似文献   

8.
A novel class of salicylic acid and N-acetyl-2-carboxybenzenesulfonamide regioisomers possessing a N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore attached to its C-4 or C-5 position was designed for evaluation as anti-inflammatory (AI) agents. Replacement of the 2,4-difluorophenyl ring in diflunisal by the N-difluoromethyl-1,2-dihydropyrid-2-one moiety provided compounds showing dual selective cyclooxygenase-2 (COX-2)/5-lipoxygenase (5-LOX) inhibitory activities. AI structure–activity studies showed that the C-4 (14a) and C-5 (14b) salicylate regioisomers were 1.4- and 1.6-fold more potent than aspirin, and the C-5 N-acetyl-2-carboxybenzenesulfonamide regioisomer (22b) was 1.3- and 2.8-fold more potent than ibuprofen and aspirin, respectively. In vivo ulcer index (UI) studies showed that the 4- and 5-(N-difluoromethyl-1,2-dihydropyrid-2-one-4-yl)salicylic acids (14a and 14b) were completely non-ulcerogenic since no gastric lesions were present (UI = 0) relative to aspirin (UI = 57) at an equivalent μmol/kg oral dose. The N-difluoromethyl-1,2-dihydropyridin-2-one moiety provides a novel 5-LOX pharmacophore for the design of cyclic hydroxamic mimetics for exploitation in the development of dual COX-2/5-LOX inhibitory AI drugs.  相似文献   

9.
Ten novel mono- and di-O-prenylated chalcone derivatives were designed on the basis of a homology derived molecular model of 5-lipoxygenase (5-LOX). The compounds were docked into 5-LOX active site and the binding characteristics were quantified using LUDI. To verify our theoretical assumption, the molecules were synthesized and tested for their 5-LOX inhibitory activities. The synthesis was carried out by Claisen–Schmidt condensation reaction of mono- and di-O-prenylated acetophenones with appropriate aldehydes. 5-LOX in vitro inhibition assay showed higher potency of di-O-prenylated chalcones than their mono-O-prenylated chalcone analogs. Compound 5e exhibited good inhibition with an IC50 at 4 μM. The overall trend for the binding energies calculated and LUDI score was in good qualitative agreement with the experimental data. Further, the compound 5e showed potent anti-proliferative effects (GI50 at 9 μM) on breast cancer cell line, MCF-7.  相似文献   

10.
Dual-target-directed 1,3-diphenylurea derivatives were designed by hybridizing BACE 1 inhibitor 1 with metal chelator LR-90. A database consisted of 1,3-diphenylurea derivatives was built and screened by the pharmacophore model (Hypo 1) of BACE 1 inhibitor. Based on the predicted results, 11 compounds (6ad, 9ag) with favorable Fitvalues were selected, synthesized and evaluated for their BACE 1 inhibitory activities, which showed that the predicted results were in good agreement with the experimental values. Besides, the synthesized compounds also displayed the ability to chelate metal ions. The most effective BACE 1 inhibitor 9f (27.85 ± 2.46 μmol/L) was selected for further receptor-binding studies, the result of which indicated that an essential hydrogen bonds was formed between the urea group of 9f and the catalytic aspartate Asp228.  相似文献   

11.
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimum biofilm inhibitory concentration (MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched.  相似文献   

12.
A series of l-arginine derivatives were designed, synthesized and assayed for their activities against amino-peptidase N (APN)/CD13 and metalloproteinase-2 (MMP-2). The results showed that most compounds exhibited high inhibitory activities against APN and low activities against MMP-2. Within this series, two compounds 5q and 5s (IC50 = 5.3 and 5.1 μM) showed similar inhibitory activities compared with bestatin (IC50 = 3.8 μM), which could be used as novel lead compounds for the future APN inhibitors development as anticancer agents.  相似文献   

13.
Human reticulocyte 12/15-lipoxygenase (h12/15-LOX) is a lipid-oxidizing enzyme that can directly oxidize lipid membranes in the absence of a phospholipase, leading to a direct attack on organelles, such as the mitochondria. This cytotoxic activity of h12/15-LOX is up-regulated in neurons and endothelial cells after a stroke and thought to contribute to both neuronal cell death and blood–brain barrier leakage. The discovery of inhibitors that selectively target recombinant h12/15-LOX in vitro, as well as possessing activity against the murine ortholog ex vivo, could potentially support a novel therapeutic strategy for the treatment of stroke. Herein, we report a new family of inhibitors discovered in a High Throughput Screen (HTS) that are selective and potent against recombinant h12/15-LOX and cellular mouse 12/15-LOX (m12/15-LOX). MLS000099089 (compound 99089), the parent molecule, exhibits an IC50 potency of 3.4 ± 0.5 μM against h12/15-LOX in vitro and an ex vivo IC50 potency of approximately 10 μM in a mouse neuronal cell line, HT-22. Compound 99089 displays greater than 30-fold selectivity versus h5-LOX and COX-2, 15-fold versus h15-LOX-2 and 10-fold versus h12-LOX, when tested at 20 μM inhibitor concentration. Steady-state inhibition kinetics reveals that the mode of inhibition of 99089 against h12/15-LOX is that of a mixed inhibitor with a Kic of 1.0 ± 0.08 μM and a Kiu of 6.0 ± 3.3 μM. These data indicate that 99089 and related derivatives may serve as a starting point for the development of anti-stroke therapeutics due to their ability to selectively target h12/15-LOX in vitro and m12/15-LOX ex vivo.  相似文献   

14.
A series of new resveratrol analogues were designed and synthesized and their inhibitory activities against aromatase were evaluated. The crystal structure of human aromatase (PDB 3eqm) was used to rationalize the mechanism of action of the aromatase inhibitor 32 (IC50 0.59 μM) through docking, molecular mechanics energy minimization, and computer graphics molecular modeling, and the information was utilized to design several very potent inhibitors, including compounds 82 (IC50 70 nM) and 84 (IC50 36 nM). The aromatase inhibitory activities of these compounds are much more potent than that for the lead compound resveratrol, which has an IC50 of 80 μM. In addition to aromatase inhibitory activity, compounds 32 and 44 also displayed potent QR2 inhibitory activity (IC50 1.7 μM and 0.27 μM, respectively) and the high-resolution X-ray structures of QR2 in complex with these two compounds provide insight into their mechanism of QR2 inhibition. The aromatase and quinone reductase inhibitors resulting from these studies have potential value in the treatment and prevention of cancer.  相似文献   

15.
New molecular hybrids combining benzothiophene or its bioisostere benzofuran with rhodanine were synthesized as potential dual COX-2/5-LOX inhibitors. The benzothiophene or benzofuran scaffold was linked at position -2 with rhodanine which was further linked to various anti-inflammatory pharmacophores so as to investigate the effect of such molecular variation on the anti-inflammatory activity. The target compounds were evaluated for their in vitro COX/LOX inhibitory activity. The results revealed that, compound 5h exhibited significant COX-2 inhibition higher than celecoxib. Furthermore, compounds 5a, 5f and 5i showed COX-2 inhibitory activity comparable to celecoxib. Compound 5h showed selectivity index SI = 5.1 which was near to that of celecoxib (SI = 6.7). Compound 5h displayed LOX inhibitory activity twice than that of meclofenamate sodium. Moreover, compounds 5a, 5e and 5f showed significant LOX inhibitory activity higher than that of meclofenamate sodium. Compound 5h was screened for its in vivo anti-inflammatory activity using formalin-induced paw edema and gastric ulcerogenic activity tests. The results revealed that, it showed in vivo decrease in formalin-induced paw edema volume higher than celecoxib. It also displayed gastrointestinal safety profile as celecoxib. The biological results were also consistent with the docking studies at the active sites of the target enzymes COX-2 and 5-LOX. Also, compound 5h showed physicochemical, ADMET, and drug-like properties within those considered adequate for a drug candidate.  相似文献   

16.
A new group of acetic acid (7ac, R1 = H), and propionic acid (7df, R1 = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF2 substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO2NH2) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.  相似文献   

17.
Two new series of new compounds containing a 6-amino-substituted group or 6-acrylamide-substituted group linked to a 4-anilinoquinazoline nucleus have been discovered as potential EGFR inhibitors. These compounds proved efficient effects on antiproliferative activity and EGFR–TK inhibitory activity. Especially, N6-((5-bromothiophen-2-yl)methyl)-N4-(3-chlorophenyl)quinazoline-4,6-diamine (5e), showed the most potent inhibitory activity (IC50 = 3.11 μM for Hep G2, IC50 = 0.82 μM for A549). The EGFR molecular docking model suggested that the new compound is nicely bound to the region of EGFR, and cell morphology by Hoechst stain experiment suggested that these compounds efficiently induced apoptosis of A549 cells.  相似文献   

18.
Combining N-benzylpiperidine moiety of donepezil and coumarin into in a single molecule, novel hybrids with ChE and MAO-B inhibitory activity were designed and synthesized. The biological screening results indicated that most of compounds displayed potent inhibitory activity for AChE and BuChE, and clearly selective inhibition to MAO-B. Of these compounds, 5m was the most potent inhibitor for eeAChE and eqBuChE (0.87 μM and 0.93 μM, respectively), and it was also a good and balanced inhibitor to hChEs and hMAO-B (1.37 μM for hAChE; 1.98 μM for hBuChE; 2.62 μM for hMAO-B). Molecular modeling and kinetic studies revealed that 5m was a mixed-type inhibitor, which bond simultaneously to CAS, PAS and mid-gorge site of AChE, and it was also a competitive inhibitor, which occupied the active site of MAO-B. In addition, 5m showed good ability to cross the BBB and had no toxicity on SH-SY5Y neuroblastoma cells. Collectively, all these results suggested that 5m might be a promising multi-target lead candidate worthy of further pursuit.  相似文献   

19.
An integrated molecular design strategy combining pharmacophore recognition and scaffold hopping was exploited to discover novel PTP1B inhibitors based on the known PTP1B inhibitor Ertiprotafib. A composite pharmacophore model was proposed from the interaction mode of Ertiprotafib, and 21 diverse molecules from five distinct structural classes were designed and synthesized accordingly. New compounds with considerable inhibition against PTP1B were identified from each series, and the most active compound 3a showed IC50 value of 1.3 μmol L?1 against human recombinant PTP1B. Docking study indicated that the new inhibitors assumed binding modes similar to that of Ertiprotafib.  相似文献   

20.
Aryl sulfonamido tetralins based on lead compound 2a were synthesized and evaluated for Kv1.5 inhibitory activity. Several compounds having IC50 values less then 0.1 μM were identified. Kv1.5 inhibitors have the potential to be atrium-selective agents for the treatment of atrial fibrillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号