首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel series of 1,2,4-triazolyl octahydropyrrolo[2,3-b]pyrroles showing high affinity and selectivity at the DA D3 receptor is reported here. Compounds endowed with high selectivity over the hERG channel were identified and their pharmacokinetic properties thoroughly analyzed. A few derivatives with appropriate developability characteristics were selected for further studies and progression along the screening cascade. In particular, derivative 60a, (DA D3 pKi = 8.4, DA D2 pKi = 6.0 and hERG fpKi = 5.2) showed a balanced profile and further refinements are in progress around this molecule.  相似文献   

2.
Previously, benzthiazole containing LTA4H inhibitors were discovered that were potent (13), but were associated with the potential for a hERG liability. Utilizing medicinal chemistry first principles (e.g., introducing rigidity, lowering c Log D) a new benzthiazole series was designed, congeners of 13, which led to compounds 7a, 7c, 12ad which exhibited LTA4H IC50 = 3–6 nM and hERG Dofetilide Binding IC50 = 8.9–> >10 μM.  相似文献   

3.
Previous studies have shown that compound 1 displayed high affinity towards histamine H3 receptor (H3R), (human (h-H3R), Ki = 8.6 nM, rhesus monkey (rh-H3R), Ki = 1.2 nM, and rat (r-H3R), Ki = 16.5 nM), but exhibited high affinity for hERG channel. Herein, we report the discovery of a novel, potent, and highly selective H3R antagonist/inverse agonist 5a(SS) (SAR110068) with acceptable hERG channel selectivity and desirable pharmacological and pharmacokinetic properties through lead optimization sequence. The significant awakening effects of 5a(SS) on sleep–wake cycles studied by using EEG recording in rats during their light phase support its potential therapeutic utility in human sleep–wake disorders.  相似文献   

4.
Further structure activity relationship studies on a previously reported 8-azabicyclo[3.2.1]octan-3-yloxy-benzamide series of potent and selective kappa opioid receptor antagonists is discussed. Modification of the pendant N-substitution to include a cyclohexylurea moiety produced analogs with greater in vitro opioid and hERG selectivity such as 12 (κ IC50 = 172 nM, μ:κ ratio = 93, δ:κ ratio = >174, hERG IC50 = >33 μM). Changes to the linker conformation and identity as well as to the benzamide ring moiety were also investigated.  相似文献   

5.
To identify potent dual 5-HT2B and 5-HT7 receptor antagonists, we synthesized a series of novel carbonyl guanidine derivatives and examined their structure–activity relationships. Among these compounds, N-(9-hydroxy-9H-fluorene-2-carbonyl)guanidine (10) had a good in vitro profile, that is, potent affinity for human 5-HT2B and 5-HT7 receptor subtypes (Ki = 1.8 nM and Ki = 17.6 nM, respectively) and high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Compound 10 also showed a suppressing effect on 5-HT-induced dural protein extravasation in guinea pigs when orally administered.  相似文献   

6.
Introducing a sulfamide moiety to our coumarin derivatives afforded enhanced Raf/MEK inhibitory activity concomitantly with an acceptable PK profile. Novel sulfamide 17 showed potent HCT116 cell growth inhibition (IC50 = 8 nM) and good PK profile (bioavailability of 51% in mouse), resulting in high in vivo antitumor efficacy in the HCT116 xenograft (ED50 = 4.8 mg/kg). We confirmed the sulfamide moiety showed no negative impact on tests run on the compound to evaluate DMPK (PK profiles in three animal species, CYP inhibition and CYP induction) and the safety profile (hERG and AMES tests). Sulfamide 17 had favorable properties that warranted further preclinical assessment  相似文献   

7.
Alzheimer’s disease drug discovery regarding exploration into the molecules and processes has focused on the intrinsic causes of the brain disorder correlated with the accumulation of amyloid-β. An anti-amyloidogenic bis-styrylbenzene derivative, KMS80013, showed excellent oral bioavailability (F = 46.2%), facilitated brain penetration (26%, iv) in mouse and target specific in vivo efficacy in acute AD mouse model attenuating the cognitive deficiency in Y-maze test. Acute toxicity (LD50 >2000 mg/kg) and hERG channel inhibition (14% at 10 μM) results indicated safety of KMS80013.  相似文献   

8.
Two new series of 4,6-diaryl-3-cyanopyridine 4a-r and 1,3,5-triaryl-2-pyrazolines 6a-f and were prepared. The new compounds were evaluated for their in vitro COX-2 selectivity and in vivo anti-inflammatory activity. Compounds 4o,r and 6d,f had moderate to high selectivity index (S.I.) compared to celecoxib (selectivity indexes of 4.5, 3.14, 4.79 and 3.21, respectively) and also, showed in vivo anti-inflammatory activity approximately equal to or higher than celecoxib (edema inhibition % = 60.5, 64.5, 59.3 and 59.3, after 3 h, respectively) and the effective anti-inflammatory doses were (ED50 = 10.1, 7.8, 8.46 and 10.7 mg/kg respectively, celecoxib ED50 = 10.8 mg/kg) and ulcerogenic liability were determined for these compounds which showed promising activity by being more potent than celecoxib with nearly negligible ulcerogenic liability compared to celecoxib (reduction in ulcerogenic liability versus celecoxib = 85, 82, 74 and 67%, respectively).  相似文献   

9.
To obtain an optimized T-type calcium channel blocker with reduced off-target hERG toxicity, we modified the structure of the original compound by introducing a zwitterion and reducing the basicity of the nitrogen. Among the structurally modified compounds we designed, compounds 5 and 6, which incorporate amides in place of the original compound’s amines, most appreciably alleviated hERG toxicity while maintaining T-type calcium channel blocking activity. Notably, the benzimidazole amide 5 selectively blocked T-type calcium channels without inhibiting hERG (hERG/T-type  220) and L-type channels (L-type/T-type = 96), and exhibited an excellent pharmacokinetic profile in rats.  相似文献   

10.
6,7-Benzomorphan derivatives, exhibiting different μ, δ, and κ receptor selectivity profiles depending on the N-substituent, represent a useful skeleton for the synthesis of new and better analgesic agents. In this work, an aromatic ring and/or alkyl residues have been used with an N-propanamide or N-acetamide spacer for the synthesis of a new series of 5,9-dimethyl-2′-hydroxy-6,7-benzomorphan derivatives (1222). Data obtained by competition binding assays showed that the μ opioid receptor seems to prefer an interaction with the 6,7-benzomorphan ligands having an N-substituent with a propanamide spacer and less hindered amide. Highly stringent features are required for δ receptor interaction, while an N-acetamide spacer and/or bulkier amide could preferentially lead to κ receptor selectivity. In the propanamide series, compound 12 (named LP1) displayed high μ affinity (Ki = 0.83 nM), good δ affinity (Ki = 29 nM) and low affinity for the κ receptor (Ki = 110 nM), with a selectivity ratio δ/μ and κ/μ of 35.1 and 132.5, respectively. Further, in the adenylyl cyclase assay, LP1 displayed a μ/δ agonist profile, with IC50 values of 4.8 and 12 nM at the μ and δ receptors, respectively. The antinociceptive potency of LP1 in the tail-flick test after sc administration in rat was comparable with the potency of morphine (ED50 = 2.03 and 2.7 mg/kg, respectively), and was totally reversed by naloxone. LP1, possessing a μ/δ agonist profile, could represent a lead in further developing benzomorphan-based ligands with potent in vivo analgesic activity and a reduced tendency to induce side effects.  相似文献   

11.
The synthesis and in vitro preclinical profile of a series of 5-heteroaryl substituted analogs of the antipsychotic drug sertindole are presented. Compounds 1-(4-fluorophenyl)-3-(1-methylpiperidin-4-yl)-5-(pyrimidin-5-yl)-1H-indole (Lu AA27122, 3i) and 1-(4-fluorophenyl)-5-(1-methyl-1H-1,2,4-triazol-3-yl)-3-(1-methylpiperidin-4-yl)-1H-indole (3l) were identified as high affinity α1A-adrenoceptor ligands with Ki values of 0.52 and 0.16 nM, respectively, and with a >100-fold selectivity versus dopamine D2 receptors. Compound 3i showed almost equal affinity for α1B- (Ki = 1.9 nM) and α1D-adrenoceptors (Ki = 2.5 nM) as for α1A, as well as moderate affinity for 5-HT1B (Ki = 13 nM) and 5-HT6 (Ki = 16 nM) receptors, whereas 3l showed >40-fold selectivity toward all other targets tested. Based on in vitro assays for assessment of permeability rates and extent, it is predicted that both compounds enter the brain of rats, non-human primates, as well as humans, and as such are good candidates to be carried forward for further evaluation as positron emission tomography (PET) ligands.  相似文献   

12.
A series of novel, potent 4-aminothienopyridine B-Raf kinase inhibitors was designed and synthesized using knowledge-based design. Compounds 5f, and 6k exhibited not only excellent potency in both enzyme assay (IC50 = 5.1, 16.6 nM) and cellular assay (IC50 = 0.2, 0.2 μM), but also had an outstanding selectivity profile against other kinases.  相似文献   

13.
A series of thirty N-(phenoxy)alkyl or N-{2-[2-(phenoxy)ethoxy]ethyl}aminoalkanols has been designed, synthesized and evaluated for anticonvulsant activity in MES, 6 Hz test, and pilocarpine-induced status epilepticus. Among the title compounds, the most promising seems R-(−)-2N-{2-[2-(2,6-dimethylphenoxy)ethoxy]ethyl}aminopropan-1-ol hydrochloride (22a) with proved absolute configuration with X-ray analysis and enantiomeric purity. The compound is effective in MES test with ED50 = 12.92 mg/kg b.w. and its rotarod TD50 = 33.26 mg/kg b.w. The activity dose is also effective in a neurogenic pain model—the formalin test. Within high throughput profile assay, among eighty one targets, the strongest affinity of the compound is observed towards σ receptors and 5-HT transporter and the compound does not bind to hERG. It also does not exhibit mutagenic properties in the Vibrio harveyi test. Moreover, murine liver microsomal assay and pharmacokinetics profile (mice, iv, p.o., ip) indicate that the liver is the primary site of biotransformation of the compound, suggesting that both 22a and its metabolite(s) are active, compensating probably low bioavailability of the parent molecule.  相似文献   

14.
The growth inhibitory effect on Trypanosoma cruzi epimastigotes and the unspecific cytotoxicity over NCTC-929 fibroblasts of two series of previously synthesized 2,4-diaryl-1,2,3,4-tetrahydroquinolines (THQ), have been studied in vitro and compared with those of benznidazole (BZ). Derivatives AR39, AR40, AR41, AR91 and DM15 achieved outstanding selectivity indexes (SI) on the extracellular form (SITHQ > SIBZ > 9.44) and thus, were tested in a more specific in vitro assay against amastigotes, showing less effectiveness than the reference drug (SIBZ > 320) but also accomplishing great selectivity on the intracellular stage (SITHQ > 25). These promising results, supported by the in silico prediction of high bioavailability and less potential risk than benznidazole, reveal several tetrahydroquinolines as prototypes of potential antichagasic drugs.  相似文献   

15.
A novel series of potent CGRP receptor antagonists containing a central quinoline ring constraint was identified. The combination of the quinoline constraint with a tricyclic benzimidazolinone left hand fragment produced an analog with picomolar potency (14, CGRP Ki = 23 pM). Further optimization of the tricycle produced a CGRP receptor antagonist that exhibited subnanomolar potency (19, CGRP Ki = 0.52 nM) and displayed a good pharmacokinetic profile in three preclinical species.  相似文献   

16.
Oxadiazoles and thiadiazoles 137 were synthesized and evaluated for the first time for their α-glucosidase inhibitory activities. As a result, fifteen of them 1, 4, 5, 7, 8, 13, 17, 23, 25, 30, 32, 33, 35, 36 and 37 were identified as potent inhibitors of the enzyme. Kinetic studies of the most active compounds (oxadiazoles 1, 23 and 25, and thiadiazoles 35 and 37) were carried out to determine their mode of inhibition and dissociation constants Ki. The most potent compound of the oxadiazole series (compound 23) was found to be a non-competitive inhibitor (Ki = 4.36 ± 0.017 μM), while most potent thiadiazole 35 was identified as a competitive inhibitor (Ki = 6.0 ± 0.059 μM). The selectivity and toxicity of these compounds were also studied by evaluating their potential against other enzymes, such as carbonic anhydrase-II and phosphodiesterase-I. Cytotoxicity was evaluated against rat fibroblast 3T3 cell line. Interestingly, these compounds were found to be inactive against other enzymes, exhibiting their selectivity towards α-glucosidase. Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. α-Glucosidase inhibitors can also be used as anti-obesity and anti-viral drugs. Our study identifies two novel series of potent α-glucosidase inhibitors for further investigation.  相似文献   

17.
The spider venom peptide Huwentoxin-IV (HwTx-IV) 1 is a potent antagonist of hNav1.7 (IC50 determined herein as 17 ± 2 nM). Nav1.7 is a voltage-gated sodium channel involved in the generation and conduction of neuropathic and nociceptive pain signals. We prepared a number of HwTx-IV analogs as part of a structure–function study into Nav1.7 antagonism. The inhibitory potency of these analogs was determined by automated electrophysiology and is reported herein. In particular, the native residues Glu1, Glu4, Phe6 and Tyr33 were revealed as important activity modulators and several peptides bearing mutations in these positions showed significantly increased potency on hNav1.7 while maintaining the original selectivity profile of the wild-type peptide 1 on hNav1.5. Peptide 47 (Gly1, Gly4, Trp33-HwTx) demonstrated the largest potency increase on hNav1.7 (IC50 0.4 ± 0.1 nM).  相似文献   

18.
Novel riminophenazine derivatives, characterized by the presence of the basic and cumbersome quinolizidinylalkyl and pyrrolizidinylethyl moieties, have been synthesized and tested (Rema test) against Mycobacterium tuberculosis H37Rv and H37Ra, and six clinical isolates of Mycobacterium avium and Mycobacterium tuberculosis. Most compounds exhibited potent activity against the tested strains, resulting more active than clofazimine, isoniazid and ethambutol.The best compounds (4, 5, 12 and 13) exhibited a MIC in the range 0.82–0.86 μM against all strains of Mycobacterium tuberculosis and, with the exception of 4 a MIC around 3.3 μM versus M. avium. The corresponding values for clofazimine (CFM) were 1.06 and 4.23 μM, respectively. Cytotoxicity was evaluated against three cell lines and compound 4 displayed a selectivity index (SI) versus the human cell line MT-4 comparable with that of CFM (SI = 5.23 vs 6.4). Toxicity against mammalian Vero 76 cell line was quite lower with SI = 79.  相似文献   

19.
Cyclic tetrapeptide c[Phe-pro-Phe-trp] 2, a diastereomer of CJ-15,208 (1), was identified as a potent dual κ/μ opioid receptor antagonist devoid of δ opioid receptor affinity against cloned human receptors: Ki (2) = 3.8 nM (κ), 30 nM (μ); IC50 ([35S]GTPγS binding) = 140 nM (κ), 21 nM (μ). The d-tryptophan residue rendered 2 ca. eightfold and fourfold more potent at κ and μ, respectively, than the corresponding l-configured tryptophan in the natural product 1. Phe analogs 3–10, designed to probe the effect of substituents on receptor affinity and selectivity, possessed Ki values ranging from 14 to 220 nM against the κ opioid receptor with μ/κ ratios of 0.45–3.0. An alanine scan of 2 yielded c[Ala-pro-Phe-trp] 12, an analog equipotent to 2. Agents 2 and 12 were pure antagonists in vitro devoid of agonist activity. Ac-pro-Phe-trp-Phe-NH2 16 and Ac-Phe-trp-Phe-pro-NH2 17 two of the eight possible acyclic peptides derived from 1 and 2, were selective, modestly potent μ ligands: Ki (16) = 340 nM (μ); Ki (17) = 360 nM (μ).  相似文献   

20.
To obtain selective and potent inhibitor for T-type calcium channel by ligand based drug design, 2-hydroxy-3-phenoxypropyl piperazine derivatives were synthesized and evaluated for in vitro activities. Compound 6m and 6q showed high selectivity over hERG channel (IC50 ratio of hERG/α1G 6m = 8.5, 6q = 18.38) and they were subjected to measure pharmacokinetics profiles. Among them compound 6m showed an excellent pharmacokinetic profile in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号