首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mycothiol (MSH, AcCys-GlcN-Ins) is the major low molecular weight thiol in actinomycetes and is essential for growth of Mycobacterium tuberculosis. MshB, the GlcNAc-Ins deacetylase, is a key enzyme in MSH biosynthesis. MshB from M. tuberculosis was cloned, expressed, purified, and its properties characterized. Values of k(cat) and K(m) for MshB were determined for the biological substrate, GlcNAc-Ins, and several other good substrates. The substrate specificity of MshB was compared to that of M. tuberculosis mycothiol S-conjugate amidase (Mca), a homologous enzyme having weak GlcNAc-Ins deacetylase activity. Both enzymes are metalloamidases with overlapping amidase activity toward mycothiol S-conjugates (AcCySR-GlcN-Ins). The Ins residue and hydrophobic R groups enhance the activity with both MshB and Mca, but changes in the acyl group attached to GlcN have opposite effects on the two enzymes.  相似文献   

2.
Here we report a new fluorescence-based assay for measuring MshB (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase) activity. The current assay for measuring MshB activity requires the fluorescent labeling of reaction mixtures and subsequent analysis using high-performance liquid chromatography (HPLC), resulting in a significant amount of processing time per sample. Here we describe a more rapid fluorescnce-based assay for the measurement of MshB activity that does not require HPLC analysis and can be carried out in multiwell plates. This fluorescamine (FSA)-based assay was used to determine the steady-state parameters for the deacetylation of N-acetyl-glucosamine (GlcNAc) by MshB, and the results from these experiments support the hypothesis that the inositol moiety primarily contributes to the affinity of GlcNAc–Ins (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside) for MshB. The rapid nature of this assay will aid efforts toward a more detailed biochemical characterization of MshB. Furthermore, because this assay relies on the formation of a primary amine, it could be adapted to measure the activity of mycothiol-S-conjugate amidase, a metal-dependent amidase that is a potential drug target involved in the mycothiol detoxification pathway.  相似文献   

3.
Here we report a new fluorescence-based assay for measuring MshB (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside deacetylase) activity. The current assay for measuring MshB activity requires the fluorescent labeling of reaction mixtures and subsequent analysis using high-performance liquid chromatography (HPLC), resulting in a significant amount of processing time per sample. Here we describe a more rapid fluorescnce-based assay for the measurement of MshB activity that does not require HPLC analysis and can be carried out in multiwell plates. This fluorescamine (FSA)-based assay was used to determine the steady-state parameters for the deacetylation of N-acetyl-glucosamine (GlcNAc) by MshB, and the results from these experiments support the hypothesis that the inositol moiety primarily contributes to the affinity of GlcNAc-Ins (N-acetyl-1-d-myo-inosityl-2-amino-2-deoxy-α-d-glucopyranoside) for MshB. The rapid nature of this assay will aid efforts toward a more detailed biochemical characterization of MshB. Furthermore, because this assay relies on the formation of a primary amine, it could be adapted to measure the activity of mycothiol-S-conjugate amidase, a metal-dependent amidase that is a potential drug target involved in the mycothiol detoxification pathway.  相似文献   

4.
Steffek M  Newton GL  Av-Gay Y  Fahey RC 《Biochemistry》2003,42(41):12067-12076
Mycothiol is comprised of N-acetylcysteine (AcCys) amide linked to 1D-myo-inosityl 2-amino-2-deoxy-alpha-D-glucopyranoside (GlcN-Ins) and is the predominant thiol found in most actinomycetes. Mycothiol S-conjugate amidase (Mca) cleaves the amide bond of mycothiol S-conjugates of a variety of alkylating agents and xenobiotics, producing GlcN-Ins and a mercapturic acid that can be excreted from the cell. Mca of Mycobacterium tuberculosis (Rv1082) was cloned and expressed as a soluble protein in Escherichia coli. The protein contained 1.4 +/- 0.1 equiv of zinc after purification, indicating that Mca is a metalloprotein with zinc as the native metal. Kinetic studies of Mca activity with 14 substrates demonstrated that Mca is highly specific for the mycothiol moiety of mycothiol S-conjugates and relatively nonspecific for the structure of the sulfur-linked conjugate. The deacetylase activity of Mca with GlcNAc-Ins is small but significant and failed to saturate at up to 2 mM GlcNAc-Ins, indicating that Mca may contribute modestly to the production of GlcN-Ins when GlcNAc-Ins levels are high. The versatility of Mca can be seen in its ability to react with a broad range of mycothiol S-conjugates, including two different classes of antibiotics. The mycothiol S-conjugate of rifamycin S was produced under physiologically relevant conditions and was shown to be a substrate for Mca in both oxidized and reduced forms. Significant activity was also seen with the mycothiol S-conjugate of the antibiotic cerulenin as a substrate for Mca.  相似文献   

5.
6.
The present study focuses on the genetic and biochemical characterization of mycothiol S-conjugate amidase (Mca) of Corynebacterium glutamicum. Recombinant C. glutamicum Mca was heterologously expressed in Escherichia coli and purified to apparent homogeneity. The molecular weight of native Mca protein determined by gel filtration chromatography was 35 kDa, indicating that Mca exists as monomers in the purification condition. Mca showed amidase activity with mycothiol S-conjugate of monobromobimane (MSmB) in vivo while mca mutant lost the ability to cleave MSmB. In addition, Mca showed limited deacetylase activity with N-acetyl-D-glucosamine (GlcNAc) as substrate. Optimum pH for amidase activity was between 7.5 and 8.5, while the highest activity in the presence of Zn2+ confirmed Mca as a zinc metalloprotein. Amino acid residues conserved among Mca family members were located in C. glutamicum Mca and site-directed mutagenesis of these residues indicated that Asp14, Tyr137, His139 and Asp141 were important for activity. The mca deletion mutant showed decreased resistance to antibiotics, alkylating agents, oxidants and heavy metals, and these sensitive phenotypes were recovered in the complementary strain to a great extent. The physiological roles of Mca in resistance to various toxins were further supported by the induced expression of Mca in C. glutamicum under various stress conditions, directly under the control of the stress-responsive extracytoplasmic function-sigma (ECF-σ) factor SigH.  相似文献   

7.
Mycothiol (1-D-myo-inosityl 2-(N-acetyl-L-cysteinyl)amido-2-deoxy-alpha-D-glucopyranoside, MSH or AcCys-GlcN-inositol (Ins)) is the major reducing agent in actinomycetes, including Mycobacterium tuberculosis. The biosynthesis of MSH involves a deacetylase that removes the acetyl group from the precursor GlcNAc-Ins to yield GlcN-Ins. The deacetylase (MshB) corresponds to Rv1170 of M. tuberculosis with a molecular mass of 33,400 Da. MshB is a Zn2+ metalloprotein, and the deacetylase activity is completely dependent on the presence of a divalent metal cation. We have determined the x-ray crystallographic structure of MshB, which reveals a protein that folds in a manner resembling lactate dehydrogenase in the N-terminal domain and a C-terminal domain consisting of two beta-sheets and two alpha-helices. The zinc binding site is in the N-terminal domain occupying a position equivalent to that of the NAD+ co-factor of lactate dehydrogenase. The Zn2+ is 5 coordinate with 3 residues from MshB (His-13, Asp-16, His-147) and two water molecules. One water would be displaced upon binding of substrate (GlcNAc-Ins); the other is proposed as the nucleophilic water assisted by the general base carboxylate of Asp-15. In addition to the Zn2+ providing electrophilic assistance in the hydrolysis, His-144 imidazole could form a hydrogen bond to the oxyanion of the tetrahedral intermediate. The extensive sequence identity of MshB, the deacetylase, with mycothiol S-conjugate amidase, an amide hydrolase that mediates detoxification of mycothiol S-conjugate xenobiotics, has allowed us to construct a faithful model of the catalytic domain of mycothiol S-conjugate amidase based on the structure of MshB.  相似文献   

8.
Actinomycetes, such as Mycobacterium species, are Gram-positive bacteria that utilize the small molecule mycothiol (MSH) as their primary reducing agent. Consequently, the enzymes involved in MSH biosynthesis are targets for drug development. The metal-dependent enzyme N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the hydrolysis of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside to form 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside and acetate, the fourth overall step in MSH biosynthesis. Inhibitors of metalloenzymes typically contain a group that binds to the active site metal ion; thus, a comprehensive understanding of the native cofactor(s) of metalloenzymes is critical for the development of biologically effective inhibitors. Herein, we examined the effect of metal ions on the overall activity of MshB and probed the identity of the native cofactor. We found that the activity of MshB follows the trend Fe(2+) > Co(2+) > Zn(2+) > Mn(2+) and Ni(2+). Additionally, our results show that the identity of the cofactor bound to purified MshB is highly dependent on the purification conditions used (aerobic versus anaerobic), as well as the metal ion content of the medium during protein expression. MshB prefers Fe(2+) under anaerobic conditions regardless of the metal ion content of the medium and switches between Fe(2+) and Zn(2+) under aerobic conditions as the metal content of the medium is altered. These results indicate that the cofactor bound to MshB under biological conditions is dependent on environmental conditions, suggesting that MshB may be a cambialistic metallohydrolase that contains a dynamic cofactor. Consequently, biologically effective inhibitors will likely need to dually target Fe(2+)-MshB and Zn(2+)-MshB.  相似文献   

9.
Hayward D  Wiid I  van Helden P 《IUBMB life》2004,56(3):131-138
Mycothiol (MSH) is the major cellular thiol in Mycobacterium tuberculosis (M.tb). We hypothesize that the mycothiol-dependent detoxification pathway may serve an important role during oxygen stress management in M. tuberculosis, derived from normal aerobic metabolism, the macrophage environment and through the action of anti-tubercular antibiotics, such as Isoniazid (INH). Total mRNA and DNA were isolated from M. bovis BCG at different stages of growth in 7H9 mycobacterial medium. Three genes involved in mycothiol metabolism and encoding the enzymes mycothiol S-conjugate amidase (Mca, Rv1082), NADPH dependent mycothiol reductase (mtr, Rv2855), and N-Acetyl-1-D-myo-Inosityl-2-Amino-2-Deoxy-alpha-D-Glucopyranoside Deacetylase (GlcNAc-Ins deacetylase, Rv1170 or mshB) were investigated for genomic rearrangements and expression. The results show that the genomic domains of the genes remain conserved in evolutionary diverse and unrelated M. tuberculosis isolates. The genes encoding enzymes implicated in mycothiol reduction, mtr (Rv2855) and the mycothiol-dependant detoxification of electrophilic agents, Mca (Rv1082), are shown to be actively transcribed during logarithmic M. bovis BCG growth. The gene encoding GlcNAc-Ins deacetylase (the rate limiting mycothiol biosynthesis step) shows induction in the presence of INH. Antisense oligonucleotides to both GlcNAc-Ins deacetylase (Rv1170) and mtr (Rv2855) mRNA affect mycobacterial growth. In conclusion the results presented here suggest that these enzymes are sensitive to free radical generating antituberculosis drugs and may be useful targets for new drug development.  相似文献   

10.
Actinomycetes are a group of gram-positive bacteria that includes pathogenic mycobacterial species, such as Mycobacterium tuberculosis. These organisms do not have glutathione and instead utilize the small molecule mycothiol (MSH) as their primary reducing agent and for the detoxification of xenobiotics. Due to these important functions, enzymes involved in MSH biosynthesis and MSH-dependent detoxification are targets for drug development. The metal-dependent deacetylase N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside deacetylase (MshB) catalyzes the hydrolysis of N-acetyl-1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside to form 1-D-myo-inosityl-2-amino-2-deoxy-α-D-glucopyranoside and acetate in MSH biosynthesis. Herein we examine the chemical mechanism of MshB. We demonstrate that the side chains of Asp-15, Tyr-142, His-144, and Asp-146 are important for catalytic activity. We show that NaF is an uncompetitive inhibitor of MshB, consistent with a metal-water/hydroxide functioning as the reactive nucleophile in the catalytic mechanism. We have previously shown that MshB activity has a bell-shaped dependence on pH with pK(a) values of ~7.3 and 10.5 (Huang, X., Kocabas, E. and Hernick, M. (2011) J. Biol. Chem. 286, 20275-20282). Mutagenesis experiments indicate that the observed pK(a) values reflect ionization of Asp-15 and Tyr-142, respectively. Together, findings from our studies suggest that MshB functions through a general acid-base pair mechanism with the side chain of Asp-15 functioning as the general base catalyst and His-144 serving as the general acid catalyst, whereas the side chain of Tyr-142 probably assists in polarizing substrate/stabilizing the oxyanion intermediate. Additionally, our results indicate that Tyr-142 is a dynamic side chain that plays key roles in catalysis, modulating substrate binding, chemistry, and product release.  相似文献   

11.
《Carbohydrate research》1986,147(2):237-245
The reaction of diglycol- and thiodiglycol-aldehyde (1a,b) with cyanoacetamide yields cis-3,5-diacetoxy-4-carbamoyl-4-cyano-tetrahydropyran (2a) and -tetrahydrothiopyran (2b). When this reaction is applied to (2S)-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1c), (2S)-3,5-dihydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-1,4-dioxane (1d), and (2S,3R,5S)-2-(3-acetyl-2-methyl-5-furyl)-3,5-dihydroxy-1,4-dioxane (1e), 5-(3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2c), 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-methoxycarbonyl-2-methylfuran (2e), and 3-acetyl-5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-2-methylfuran (2f), respectively, are formed with (4S,5S)-4-carbamoyl-4-cyano-2-(3-ethoxycarbonyl-2-methyl-5-furyl)-5-hydroxy-5,6-dihydropyran (3a) and (4S,5S)-4-carbamoyl-4-cyano-5-hydroxy-2-(3-methoxycarbonyl-2-methyl-5-furyl)-5,6-dihydropyran (3b) as minor products. The dehydration of 2a,b, 5-(2,4-di-O-acetyl-3-carbamoyl-3-cyano-3-deoxy-β-d-xylo-pentopyranosyl)-3-ethoxycarbonyl-2-methylfuran (2d), 2e, and 2f yields cis-3,5-diacetoxy-4,4-dicyano-tetrahydropyran and -tetrahydrothiopyran (2l,m), and the 5-(2,4-di-O-acetyl-3,3-dicyano-3-deoxy-β-d-erythro-pentopyranosyl) derivatives (2n–p) of 3-ethoxycarbonyl-2-methylfuran, 3-methoxycarbonyl-2-methylfuran, and 3-acetyl-2-methylfuran, respectively.  相似文献   

12.
The trans 5-(R), 6-(R) and 5-(S), 6-(S) diastereoisomeric forms of 5-bromo-5,6-dihydro-6-hydroxythymidine were obtained by the action of bromine upon thymidine in aqueous solution. Treatment of these compounds with warm M hydrobromic acid both rearranges the sugar moiety and cleaves the glycosylamine bond; the yields of both processes were determined. Reduction of the halohydrins gave three isomeric compounds derived from thymidine : 1-(2-deoxy-α-D-erythro-pentofuranosyl)thymine, 1-(2-deoxy-β-D-erythro-pentopyranosyl)thymine and 1-(2-deoxy-α-D-erythro-pentopyranosyl)thymine. These isomerisations were also shown in the treatment of thymidine with hydrobromic acid, but, in the latter case, the process is less productive than in the former one. A mechanism for these reactions is discussed.  相似文献   

13.
The metacaspase Mca1 from Saccharomyces cerevisiae displays a Q/N-rich region at its N-terminus reminiscent of yeast prion proteins. In this study, we show that the ability of Mca1 to form insoluble aggregates is modulated by a peptide stretch preceding its putative prion-forming domain. Based on its genomic locus, three potential translational start sites of Mca1 can give rise to two slightly different long Mca1 proteins or a short version, Mca1451/453 and Mca1432, respectively, although under normal physiological conditions Mca1432 is the predominant form expressed. All Mca1 variants exhibit the Q/N-rich regions, while only the long variants Mca1451/453 share an extra stretch of 19 amino acids at their N-terminal end. Strikingly, only long versions of Mca1 but not Mca1432 revealed pronounced aggregation in vivo and displayed prion-like properties when fused to the C-terminal domain of Sup35 suggesting that the N-terminal peptide element promotes the conformational switch of Mca1 protein into an insoluble state. Transfer of the 19 N-terminal amino acid stretch of Mca1451 to the N-terminus of firefly luciferase resulted in increased aggregation of luciferase, suggesting a protein destabilizing function of the peptide element. We conclude that the aggregation propensity of the potential yeast prion protein Mca1 in vivo is strongly accelerated by a short peptide segment preceding its Q/N-rich region and we speculate that such a conformational switch might occur in vivo via the usage of alternative translational start sites.  相似文献   

14.
The condensation of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl bromide and 2,3,4,6-tetra-O-benzyl-D-mannopyranosyl chloride with benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside (1), under Koenigs-Knorr conditions, gave the fully benzylated derivatives of benzyl 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranoside, benzyl 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranoside, and benzyl 2-acetamido-2-deoxy-4-O-α-D-mannopyranosyl-α-D-glucopyranoside. Three further compounds, namely, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D-glucopyranosyl)-α-D-glucopyranoside, benzyl 2-acetamido-3-O-benzyl-2-deoxy-6-O-(2,3,4,6-tetra-O-benzyl-D)-mannopyranosyl)-α-D-glucopyranoside, and benzyl 2-acetamido-3-O-benzyl-2-deoxy-4,6-di-O-(2,3,4,6-tetra-O-benzyl-D-mannopyranosyl)-α-D-glucopyranoside, were formed by reaction of the respective glycosyl halide with benzyl 2-acetamido-3-O-benzyl-2-deoxy-α-D-glucopyranoside present as contaminant in 1.  相似文献   

15.
9-(2-S-Ethyl-2-thio- and α-D-mannofuranosyl)adenine ( and ) were synthesized from ethyl 3,5,6-tri-O-acetyl-2-S-ethyl-1,2-dithio-α-D-mannofuranoside (1) by bromination followed by coupling of the resultant bromide (2) with 6-benzamido-(chloromercuri)purine. The 2-chloro analogues (10α and 10β) of and were obtained by way of a fusion reaction between 1,3,5,6-tetra-O-acetyl-2-S- ethyl-2-thio-α-D-mannofuranose (5) and 2,6-dichloropurine. Fusion of the bromide 2 with 2,4-bis(trimethylsilyloxy)pyrimidine and its 5-methyl derivative led to 1-(2-S- ethyl-2-thio-β-D-mannofuranosyl)uracil (16) and its thymine analogue (15). The action of Raney nickel led to rapid dechlorination of 10α and 10β, and all of the 2′-thio-nucleosides underwent desulfurization to give the corresponding 2′-deoxynucleosides. Sequential periodate oxidation-borohydride reduction converted the hexofuranosyl nucleosides into their pentofuranosyl analogues. Thus prepared were 9-(2-deoxy-α-and β-D-arabino-hexofuranosyl)adenine (11α and 11β) and their 2-deoxy-D-threo-pentofuranosyl counterparts ( and 2′-deoxy-3′-epiadenosine, ), and 1-(2-deoxy- β-D-arabino-hexofuranosyl)-thymine (17) and -uracil (18) and their 2-deoxy-D-threo-pentofuranosyl counterparts (3′-epithymidine, 21, and 2′-deoxy-3′-epiuridine, 20). Detailed n.m.r.-spectral correlations are described for the series, and various derivatives of the nucleosides are reported.  相似文献   

16.
Mycothiol is the major thiol present in most actinomycetes and is produced from the pseudodisaccharide 1D-myo-inosityl 2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins). A transposon mutant of Mycobacterium smegmatis shown to be GlcNAc-Ins and mycothiol deficient was sequenced to identify a putative glycosyltransferase gene designated mshA. The ortholog in Mycobacterium tuberculosis, Rv0486, was used to complement the mutant phenotype.  相似文献   

17.
A novel affinity chromatographic adsorbent was developed for purification of spermidine synthase from rat prostate. The adsorbent (S-adenosyl(5′)-3-thiopropylamine-Sepharose) possesses a ligand structurally similar to S-adenosyl(5′)-3-methylthiopropylamine (decarboxy AdoMet), a substrate of spermidine synthase. The S-adenosyl(5′)-3-thiopropylamine-Sepharose was prepared by an alkylation on sulfur of S-adenosyl-3-thiopropylamine by bromoacetamidohexyl-Sepharose under mild acidic conditions. The enzyme has been purified to homogeneity in 40% yield by using DEAE-cellulose, affinity chromatography employing S-adenosyl(5′)-3-thiopropylamine-Sepharose, and gel filtration. The enzyme had a molecular weight of approximately 73,000 and was composed of two subunits of equal size. The specificity of the reaction was rather strict, but cadaverine could replace putrescine as the aminopropyl acceptor, and the rate was 1/20th of the rate for spermidine formation. Apparent Km values for putrescine and decarboxy AdoMet were 0.1 mm and 1.1 μm, respectively. Inhibition by decarboxy AdoMet and 5′-deoxy-5′-methylthioadenosine was observed. The inhibition by 5′-deoxy-5′-methylthioadenosine was partially noncompetitive with respect to decarboxy AdoMet.  相似文献   

18.
6-S-[2-[(2-ethylhexyl)oxycarbonyl]ethyl)}-3′,5′-O-bis(tert-butyldimethylsilyl)-2′-deoxy-6-thiogua nosine (2) was synthesized in high yield from the corresponding 6-O-mesitylenesulfonyl derivative by the reaction with 2-ethylhexyl 3-mercapto-propionate. The phosphoramidite precursor derived from 2 was successfully applied to an automated DNA synthesizer to produce 2′-deoxy-6-thioguanosine containing ODN. The results showed that 2-ethylhexyl 3-mercaptopropionate is useful as an odor less reagent and also as an S-protecting group of 2′-deoxy-6-thioguanosine.  相似文献   

19.
Matrix metalloproteases (MMPs) in particular MMP-2, have been associated with several pathological conditions such as ovarian, urothelial, cutaneous, gastric, breast, and cervical cancers, etc. Successful treatment of these pathological conditions requires sensitive, reliable, quick and effective diagnostic tools such as fluorescence resonance energy transfer (FRET) based assays in early stage of the disease. A peptidyl-FRET substrate having seven amino acid residues (PLGLKAR) with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher group has been synthesized using solid-phase fluorenylmethoxycarbonyl (Fmoc) peptide chemistry. The newly designed substrate is stable and shows a K m value of 15???M for hMMP-2. This K m value is the lowest compared with all other known hMMP-2 substrates having Mca/Dnp. Validation of the new FRET substrate in presence/absence of scorpion venom chlorotoxin, a known hMMP-2 inhibitor, shows an increase in detection efficiency of 6,250 times as compared to commonly used gelatin zymography. The new FRET substrate is much more cost effective and can be used for high throughput screening of hMMP-2 inhibitors in the laboratory for research and diagnostic purposes.  相似文献   

20.
《Carbohydrate research》1985,144(1):87-92
As alkaline degradation products of pectic acid, 6 hydroxymonocarboxylic, 16 dicarboxylic, and 2 tricarboxylic acids were identified by g.l.c.-m.s. as their trimethylsilyl derivatives. In the absence of oxygen, the most abundant degradation products are 3-deoxy-2-C-(hydroxymethyl)pentaric, 2,3-dideoxypentaric, 2-deoxy-3-C-methyltetraric, malic, and 21,4-anhydro-3-deoxy-2-C-(hydroxymethyl)pentaric acids, whereas, in the presence of oxygen, glycolic, oxalic, malic, 3-deoxypentaric, and 2-C-carboxy-3-deoxypentaric acids preponderate. The routes of formation of these acids show many similarities with those encountered in the alkaline degradation of cellulose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号