首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In our search for novel small molecules targeting histone deacetylases, we have designed and synthesized two series of novel N-hydroxybenzamides incorporating 2-oxoindolines (4ag, 6ag). Biological evaluation showed that these benzamides potently inhibited HDAC2 with IC50 values in sub-micromolar range. In three human cancer cell lines the synthesized compounds were up to 4-fold more cytotoxic than SAHA. Docking experiments indicated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA. Our present results demonstrate that these novel and simple N-hydroxybenzamides are potential for further development as anticancer agents and further investigation of similarly simple N-hydroxybenzamides should be warranted to obtain more potent HDAC inhibitors.  相似文献   

2.
Chronic ultraviolet (UV) radiation exposure is a major cause of skin cancer. A novel series of hybrid derivatives (IVIII) for use in sunscreen formulations were synthesized by molecular hybridization of t-resveratrol, avobenzone, and octyl methoxycinnamate, and were characterized. The antioxidant activity values for VIII were comparable than to those of t-resveratrol. Compounds IIII and VI demonstrated Sun Protector Factor superior to that of t-resveratrol. Compounds I and IVVIII were identified as new, broad-spectrum UVA filters while IIIII were UVB filters. In conclusion, novel hybrid derivatives with antioxidant effects have emerged as novel photoprotective agents for the prevention of skin cancer.  相似文献   

3.
A series of novel 5-phenyl-1H-pyrazole-3-carboxylic acid amide derivatives were designed, synthesized, and their acrosin inhibitory activities in vitro were evaluated. The results of the acrosin inhibitory activity showed that all target compounds were more potent than control TLCK. Compounds AQ-A1, AQ-D3, AQ-D4, AQ-E4 and AQ-E5 exhibited stronger acrosin inhibitory activities than control ISO-1. Especially, compound AQ-E5 displayed the most potent acrosin inhibitory activity in all the compounds, with an IC50 of 0.01 μmol/mL. This study provided a new structural class for the development of novel acrosin inhibitory agents.  相似文献   

4.
Structural modification of a 1,4-benzodiazepin-2-one-based PTHR1 antagonist 5, a novel type of PTHR1 antagonist previously synthesized in our laboratories, yielded compound 10, which had better chemical stability than compound 5. Successive optimization of the lead 10 improved aqueous solubility, metabolic stability, and animal pharmacokinetics, culminating in the identification of DS37571084 (12). Our study paves the way for the discovery of novel and orally bioavailable PTHR1 antagonists.  相似文献   

5.
Indoleamine 2,3-dioxygenase (IDO) plays a significant role in several disorders such as Alzheimer’s disease, age-related cataracts and tumors. A series of novel tryptoline derivatives were synthesized and evaluated for their inhibitory activity against IDO. Substituted tryptoline derivatives (11a, 11c, 11e, 12b and 12c) were demonstrated to be more potent than known inhibitor MTH-Trp. Suzuki–Miyaura cross-coupling reaction of 11ad with phenylboronic acid proceeded in high yields. In most cases, C5 and C6 substitutions on the corresponding indole ring were well tolerated. The tryptoline derivative 11c is a promising chemical lead for the discovery of novel IDO inhibitors.  相似文献   

6.
A novel scaffold of arylpiperazine derivatives was discovered as potent androgen receptor (AR) antagonist through rational drug designation based on our pre-work, leading to the discovery of a series of new antiproliferative compounds. Compounds 10, 16, 27, 29 and 31 exhibited relatively strong antagonistic potency against AR and exhibited potent AR binding affinities, while compounds 5, 6, 10, 14, 16, 19, 21, 27 and 31 exhibited strong cytotoxic activities against LNCaP cells (AR-rich) as well as also displayed the higher activities than finasteride toward PC-3 (AR-deficient) and DU145 (AR-deficient). Docking study suggested that the most potent antagonist 16 mainly bind to AR ligand binding pocket (LBP) site through hydrogen bonding interactions. The structure-activity relationship (SAR) of these designed arylpiperazine derivatives was rationally explored and discussed. These results indicated that the novel scaffold compounds demonstrated a step towards the development of novel and improved AR antagonists, and promising candidates for future development were identified.  相似文献   

7.
It is still challenging to determine the potential targets of natural products, which is essential for further drug research and development. Due to its novel mechanism of action of inducing autophagy effects in breast cancer cells, asperphenamate has received our considerable attention. However, its unknown target inevitably impedes further study. In our previous work, the target enzyme of asperphenamate was predicted as cathepsin by the natural product consensus pharmacophore strategy. Then, asperphenamate and its three derivatives were chosen to study in detail by molecular docking calculations with AutoDock 4 suite. The docking results showed the three derivatives interacted more tightly with either cathepsin L or cathepsin S than with asperphenamate. The ortho-benzyloxyl phenylacetyl derivative 1 and p-toluenesulfonyl derivative 3 showed similar interactions with cathepsin L and adopted a better geometric shape within the binding pocket than did the N-CBZ-piperidyl analog 2. On the other hand, compound 2 formed more hydrogen bonds than 1 and 3 to make it tightly bind within cathepsin S. The cathepsin inhibitory activity assay verified the molecular simulation results. Compound 2 was remarkably less active than 1 and 3 against cathepsin L. However, compound 2 showed the strongest potency against cathepsin S with IC50 of 13.12 ± 0.29 μM. Considering that cathepsin S plays a vital role in the process of metastasis in breast cancer cells, the inhibitory effect of 2 on migration and invasion was further studied in human breast cancer MDA-MB-231 cells by wound healing and transwell chamber assays. The results illustrated that 2 exhibited an apparent inhibitory ability to the metastasis of MDA-MB-231 cells. Next, 2 will be chosen as a lead compound to develop novel double functional chemotherapeutic agents with both novel mechanisms of action against apoptosis-resistant cancer cells, such as inducing autophagy and inhibiting cancer metastasis.  相似文献   

8.
Prostate-specific membrane antigen (PSMA) is an important biological target for therapy and diagnosis of prostate cancer. In this study, novel multivalent PSMA inhibitors with glutamate-urea-lysine structures were designed to improve inhibition characteristics. Precursors of the novel inhibitors were prepared from glutamic acid with di-tert-butyl ester. A near-infrared molecular dye, sulfo-Cy5.5, was introduced into the precursors to generate the final PSMA fluorescent inhibitors, compounds 1214, to visualize prostate cancer. Biological behaviors of the inhibitors were evaluated using in vitro inhibition assays, in vivo fluorescent imaging, and ex vivo biodistribution assays. Ki values from inhibition studies indicated that dimeric inhibitor 13 with a glutamine linker showed approximately 3-fold more inhibitory activity than monomeric inhibitor 12. According to other biological studies using a mouse model of prostate cancer, dimeric inhibitor compounds 13 and 14 had higher tumor accumulation than the monomer. However, glutamine-based dimeric inhibitor 13 showed lower liver uptake than dimeric inhibitor 14, which had a benzene structure. Thus, these studies suggest that glutamine-based dimeric inhibitor 13 can be a promising optical inhibitor of prostate cancer.  相似文献   

9.
10.
We identified a novel class of triazolothienopyrimidine (TTPM) compounds as potent HIV-1 replication inhibitors during a high-throughput screening campaign that evaluated more than 200,000 compounds using a cell-based full replication assay. Herein, we report the optimization of the antiviral activity in a cell-based assay system leading to the discovery of aryl-substituted TTPM derivatives (38, 44, and 45), which exhibited significant inhibition of HIV-1 replication with acceptable safety margins. These novel and potent TTPMs could serve as leads for further development.  相似文献   

11.
In the current work, 13 novel panaxadiol (PD) derivatives were synthesized by reacting with chloroacetyl chloride and bromoacetyl bromide. Their in vitro antitumor activities were evaluated on three human tumor cell lines (HCT-116, BGC-823, SW-480) and three normal cells (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2) by MTT assay. Compared with PD, the results demonstrated that compound 1e, 2d, 2e showed significant anti-tumor activity against three tumor cell lines, the IC50 value of compound 2d against HCT-116 was the lowest (3.836 μM). The anti-tumor activity of open-ring compounds are significantly better than the compounds of C-25 cyclization. Compound 1f, 2f, 2g showed the strong anti-tumor activity. The IC50 value of compound 2g against BGC-823 and SW-480 were the lowest (0.6 μM and 0.1 μM, respectively). Combined with cytotoxicity test, the IC50 value of compound 1e, 2d, 2e are greater than 100. the open-ring compounds (1f, 2f, 2g) showed a strong toxicity. The toxicity of 1f is lower than 2f and 2g. These compounds may be useful for the development of novel antiproliferative agents.  相似文献   

12.
Lipoprotein lipase (LPL) is a key physiological regulator of triglycerides and atherosclerosis risk. Random screening identified a compound designated C10, showing greater LPL agonist activity than NO-1886, a known LPL agonist. Structure-activity relationship (SAR) exploration of C10 led to the identification of C10d exhibiting at least two fold greater LPL activation than NO-1886. Unlike NO-1886, novel LPL agonists C10 and C10d reversed the LPL inhibition by angiopoietin-like 4 (ANGPTL4), a physiological inhibitor of LPL.  相似文献   

13.
A series of novel stilbene derivatives has been synthesized and studied with the main goal to investigate SAR of the amino compound 1a, as well as to improve its water solubility, a potentially negative aspect of the molecule that could be a serious obstacle for a pre-clinical development. We have obtained derivatives with good cytotoxic activity, in particular, the derivatives 5c and 6b could represent two novel leads for further investigation. Compound 8b, a morpholino-carbamate derivative, prodrug of 1a, has a very good solubility in water, and is active in suppressing growth of tumor cells at a concentration of 5000 nM, which is a concentration 100 times higher than the parent stilbene 1a.  相似文献   

14.
A novel series of non-peptide proteasome inhibitors (PIs) that act on chymotrypsin-like (ChT-L) of the proteasome were developed. These PIs bearing 4-aromatic sulfonyl naphthalene-based scaffold and Leu-boronic moiety as covalent bonding group displayed far better activity than PI-8182 for inhibiting ChT-L in preliminary biological activity test. The results showed that 2a (IC50?=?6.942?μM, MCF-7) and 2c (IC50?=?6.905?μM, MCF-7) displayed higher anti-proliferative activities than Bortezomib (IC50?=?18.37?μM, MCF-7) under our experimental conditions. Furthermore, in the microsomal stability assay, 2a demonstrated excellent metabolic stability profiles with 56% remaining after 40?min, as compared to Bortezomib of which approximately 30% was remaining. The compounds 2a, 2c emerged as promising lead compounds for the development of novel non-peptide boronate PIs.  相似文献   

15.
Based on the favorable antiviral profiles of 4′-substituted nucleosides, novel 1-(2′-deoxy-2′-fluoro-4′-C-ethynyl-β-d-arabinofuranosyl)-uracil (1a), -thymine (1b), and -cytosine (2) analogs were synthesized. Compounds 1b and 2 exhibited potent anti-HIV-1 activity with IC50 values of 86 and 1.34 nM, respectively, without significant cytotoxicity. Compound 2 was 35-fold more potent than AZT against wild-type virus, and also retained nanomolar antiviral activity against resistant strains, NL4-3 (K101E) and RTMDR. Thus, 2 merits further development as a novel NRTI drug.  相似文献   

16.
In order to discover novel small vasodilatory molecules for potential use in the treatment of vascular disease, we tested the vasodilatation effect of two types of synthetic curcumin mimics, amide type (3) and sulfonyl amide type (4), upon the basilar artery of rabbits. In general, the sulfonyl amide type mimic (4) is more potent than the amide type (3). Curcumin (1) and compounds 12 and 20 effectively dilated the basilar artery of white rabbits.  相似文献   

17.
Ten honokiol oligomers (110), including four novel trimers (14) and four novel dimers (58), were obtained by means of biotransformation of honokiol catalyzed by Momordica charantia peroxidase (MCP) for the first time. Their structures were established on the basis of spectroscopic methods. The biological results demonstrated that most of the oligomers were capable of inhibiting α-glucosidase with significant abilities, which were one to two orders of magnitude more potent than the substrate, honokiol. In particular, compound 2, the honokiol trimer, displayed the greatest inhibitory activity against α-glucosidase with an IC50 value of 1.38 μM. Kinetic and CD studies indicated that 2 inhibited α-glucosidase in a reversible, mixed-type manner and caused conformational changes in the secondary structure of the enzyme protein. These findings suggested that 2 might be exploited as a promising drug candidate for the treatment of diabetes.  相似文献   

18.
Triple-negative breast cancer (TNBC), a subset of breast cancers, have poorer survival than other breast cancer types. Recent studies have demonstrated that the abnormal Hedgehog (Hh) pathway is activated in TNBC and that these treatment-resistant cancers are sensitive to inhibition of the Hh pathway. Smoothened (Smo) protein is a vital constituent in Hh signaling and an attractive drug target. Vismodegib (VIS) is one of the most widely studied Smo inhibitors. But the clinical application of Smo inhibitors is limited to adult patients with BCC and AML, with many side effects. Therefore, it’s necessary to develop novel Smo inhibitor with better profiles. Twenty [1,2,4]triazolo[4,3-a]pyridines were designed, synthesized and screened as Smo inhibitors. Four of these novel compounds showed directly bound to Smo protein with stronger binding affinity than VIS. The new compounds showed broad anti-proliferative activity against cancer cell lines in vitro, especially triple-negative breast cancer cells. Mechanistic studies demonstrated that TPB15 markedly induced cell cycle arrest and apoptosis in MDA-MB-468 cells. TPB15 blocked Smo translocation into the cilia and reduced Smo protein and mRNA expression. Furthermore, the expression of the downstream regulatory factor glioma-associated oncogene 1 (Gli1) was significantly inhibited. Finally, TPB15 demonstrated greater anti-tumor activity in our animal models than VIS with lower toxicity. Hence, these results support further optimization of this novel scaffold to develop improved Smo antagonists.  相似文献   

19.
A series of novel thiophene derivatives was designed, synthesized and their activities as competitive inhibitors of protein tyrosine phosphatase (PTPs) 1B (PTP1B) inhibitors were evaluated. All the compounds showed inhibitory potencies, and 10 of these exhibited moderate inhibitory activities with IC50 values less than 10 μM. The activity of the most potent compound P28 (IC50 = 2.1 μM) was 15 times higher than that of the hit compound P01. Further, four representative compounds (P19, P22, P28, and P31) demonstrated remarkably high selectivities against other PTPs (e.g., PTPα, LAR, CD45, and TCPTP); P19 exhibited greater than sixfold selectivity over highly homologous TCPTP. More importantly, these compounds are permeable to cell membranes. The treatment of CHO-K1 cells with P28 (10 μM) resulted in increased phosphorylation of AKT, which suggested extensive cellular activity of this compound. The novel chemical entities reported in this study could be used for overcoming the poor selectivity and low cellular activity of PTP1B inhibitors and might represent a starting point for development of therapeutic PTP inhibitors.  相似文献   

20.
The co-crystal structure of Compound 6b with tubulin was prepared and solved for indicating the binding mode and for further optimization. Based on the co-crystal structures of tubulin with plinabulin and Compound 6b, a total of 27 novel A/B/C-rings plinabulin derivatives were designed and synthesized. Their biological activities were evaluated against human lung cancer NCI-H460 cell line. The optimum phenoxy-diketopiperazine-type Compound 6o exhibited high potent cytotoxicity (IC50 = 4.0 nM) through SAR study of three series of derivatives, which was more potent than plinabulin (IC50 = 26.2 nM) and similar to Compound 6b (IC50 = 3.8 nM) against human lung cancer NCI-H460 cell line. Subsequently, the Compound 6o was evaluated against other four human cancer cell lines. Both tubulin polymerization assay and immunofluorescence assay showed that Compound 6o could inhibit microtubule polymerization efficiently. Furthermore, theoretical calculation of the physical properties and molecular docking were elucidated for these plinabulin derivatives. The binding mode of Compound 6o was similar to Compound 6b based on the result of molecular docking. The theoretical calculated LogPo/w and PCaco of Compound 6o were better than Compound 6b, which could enhance its cytostatic activity. Therefore, Compound 6o might be developed as a novel potent anti-microtubule agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号