共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the distribution patterns of P2Y1, P2Y2 P2Y4, P2Y6, P2Y12, and P2Y13 receptors in the anterior pituitary cells of rat were studied with double-labeling immunofluorescence and Western blot. The
results showed that P2Y receptors were widely expressed in the anterior pituitary. P2Y1 and P2Y4 receptors were found to be expressed in the majority of gonadotrophs and thyrotrophs, P2Y2 receptors were expressed in a small subpopulation of lactotrophs and almost all the folliculo-stellate cells, that were also
stained with S100 protein immunoreactivity. P2Y6 receptors were expressed in macrophages. P2Y13 receptors were expressed in a small subpopulation of cells in the rat anterior pituitary, the identity of which needs to
be clarified. P2Y1 and P2Y4 receptors are co-expressed in some gonadotrophs and thyrotrophs. Corticotrophs and somatotrophs were found not to express
P2Y receptors in this study. FSH and TSH were shown to coexist in the same endocrine cells in rat anterior pituitary. The
present data suggests that purines and/or pyrimidines could be involved in regulating the functions of gonadotrophs and thyrotrophs
via P2Y1 and P2Y4 receptors, some lactotrophs via P2Y2 receptors, and folliculo-stellate cells via P2Y2 receptors in the rat anterior pituitary. 相似文献
2.
U. Gröschel-Stewart Michelle Bardini T. Robson G. Burnstock 《Cell and tissue research》1999,297(1):111-117
Immunohistochemical techniques were performed on freshly frozen sections of the duodenum of the rat using specific polyclonal antibodies to unique peptide sequences of P2X1-7 receptors. Of the antibodies to the seven known P2X receptor subtypes that mediate extracellular signalling by nucleotides, three reacted with discrete structures in the duodenal villus of the rat. Anti-P2X1 reacted with the capillary plexus in the intestinal villus, which did not extend to the crypt region, suggesting that nucleotides may be involved in the uptake and transport of metabolites. Anti-P2X5 immunostained the membranes of the narrow "stem" of villus goblet cells, where the nucleus and cell organelles reside, possibly influencing synthesis and release of mucins. P2X7 receptor immunoreactivity was only seen in the membranes of enterocytes and goblet cells at the tip of the villus, where cells are exfoliated into the lumen, consistent with earlier findings that P2X7 is involved in apoptotic events. Thus, in complex structures such as the intestinal villus, purinoceptors appear to participate in several and diverse signalling functions. 相似文献
3.
Expression of P2X receptors on immune cells in the rat liver during postnatal development 总被引:1,自引:0,他引:1
Xiang Z Lv J Jiang P Chen C Jiang B Burnstock G 《Histochemistry and cell biology》2006,126(4):453-463
Single and double-labeling immunofluorescence and RT-PCR expression of P2X receptor proteins and mRNAs were used in a study of the liver of postnatal rats. OX62 and ED1 were used as markers for dendritic and macrophage (Kupffer) cells respectively. The results showed that the P2X6 receptor subunit was up-regulated by 15-fold on hepatic sinusoid cells during postnatal days P1 to P60. Subpopulations of Kupffer cells co-expressed P2X4 and P2X6 receptor subunits and dendritic cells co-expressed P2X4 and P2X7 receptor subunits. Lipopolysaccharide (endotoxin) injected into the peritoneal cavity led to increased expression of the P2X6 receptor on Kupffer cells, suggesting that the P2X6 receptor subunit may be up-regulated by endotoxin. This study presents the first evidence that P2X receptors are widely distributed in the rat liver immune system and that activation of Kupffer and dendritic cells in the rat liver might be regulated by extracellular ATP. 相似文献
4.
Qiang Yu Zhengqing Zhao Jihu Sun Wei Guo Jiqiang Fu Geoffrey Burnstock Cheng He Zhenghua Xiang 《Histochemistry and cell biology》2010,133(2):177-188
Expression of P2X4 and P2X6 receptor subunits in the gastrointestinal tract of the rat was studied with double-labeling fluorescence immunohistochemistry. The results showed that P2X6 receptors were expressed widely in the submucosal and myenteric plexuses. In the myenteric plexus, P2X6 receptors were expressed mainly in large size neurons which resembled Dogiel type II neurons. These P2X6 receptor-immunoreactive (ir) neurons also expressed calbindin 28K, calretinin and neuronal nuclei (NeuN), proteins that are markers of intrinsic sensory neurons. In the submucosal plexus, all the calbindin 28K, calretinin and NeuN-ir cells were immunoreactive for P2X6 receptors. P2X6 receptors do not form homomultimers, but rather heteromultimers with either P2X2 or P2X4 receptors. P2X4 receptors were not expressed in neurons, but were expressed in macrophages of the rat gastrointestinal tract. These data indicate that P2X6 receptors are mainly expressed on intrinsic sensory neurons and that ATP, via P2X6 receptors probably in heteromeric combination with P2X2 receptors, may be involved in regulating the physiological functions of these neurons. 相似文献
5.
The distribution of the P2X1 subtype of purinoceptors associated with the extracellular activities of ATP was studied in the rat cerebellum at the electron-microscope level. Receptors were labelled with peroxidase-antiperoxidase and the avidin-biotin-peroxidase complex for immunocytochemistry. Immunoreactivity to P2X1 receptors was localized in subpopulations of synapses between varicosities of parallel fibres of granule cells and dendritic spines of Purkinje cells. Unlabelled varicosities of parallel fibres formed asymmetric synapses with labelled dendritic spines, whereas labelled varicosities of parallel fibres formed asymmetric synapses with unlabelled dendritic spines. P2X1 immunoreactivity was also localized in some astrocyte processes. The functional significance of these findings is discussed. 相似文献
6.
Purinoceptor subtypes were localised to various tissue types present within the nasal cavity of the rat, using immunohistochemical methods. P2X3 receptor immunoreactivity was localised in the primary olfactory neurones located both in the olfactory epithelium and vomeronasal organs (VNO) and also on subepithelial nerve fibres in the respiratory region. P2X5 receptor immunoreactivity was found in the squamous, respiratory and olfactory epithelial cells of the rat nasal mucosa. P2X7 receptor immunoreactivity was also expressed in epithelial cells and colocalised with caspase 9 (an apoptotic marker), suggesting an association with apoptosis and epithelial turnover. P2Y1 receptor immunoreactivity was found within the respiratory epithelium and submucosal glandular tissue. P2Y2 receptor immunoreactivity was localised to the mucus-secreting cells within the VNO. The possible functional roles of these receptors are discussed. 相似文献
7.
Nagaya N Tittle RK Saar N Dellal SS Hume RI 《The Journal of biological chemistry》2005,280(28):25982-25993
P2X receptors are ATP-gated ion channels made up of three similar or identical subunits. It is unknown whether ligand binding is intersubunit or intrasubunit, either for agonists or for allosteric modulators. Zinc binds to rat P2X2 receptors and acts as an allosteric modulator, potentiating channel opening. To probe the location of this zinc binding site, P2X2 receptors bearing mutations of the histidines at positions 120 and 213 were expressed in Xenopus oocytes. Studies of H120C and H213C mutants produced five lines of evidence consistent with the hypothesis that the residues in these positions bind zinc. Mixing of subunits containing the H120A or H213A mutation generated receptors that showed zinc potentiation, even though neither of these mutant receptors showed zinc potentiation on its own. Furthermore, expression of trimeric concatamers with His --> Ala mutations at some but not all six positions showed that zinc potentiation correlated with the number of intersubunit histidine pairs. These results indicate that zinc potentiation requires an interaction across a subunit interface. Expression of the H120C/H213C double mutant resulted in the formation of ectopic disulfide bonds that could be detected by changes in the physiological properties of the receptors after treatment with reducing and oxidizing agents. Immunoblot analysis of H120C/H213C protein separated under nonreducing conditions demonstrated that the ectopic bonds were between adjacent subunits. Taken together, these data indicate that His120 and His213 sit close to each other across the interface between subunits and are likely to be key components of the zinc binding site in P2X2 receptors. 相似文献
8.
Synaptic P2X receptors 总被引:11,自引:0,他引:11
Over the past two years, ATP has clearly been shown to act as a co-transmitter with GABA, glycine and probably glutamate in the central nervous system. Our understanding of the ATP-gated P2X receptors is progressing rapidly, and the pharmacology, stoichiometry and subunit combinations of heteropolymeric P2X channels has been substantially elucidated. 相似文献
9.
Localisation of P2X5 and P2X7 receptors by immunohistochemistry in rat stratified squamous epithelia
U. Gröschel-Stewart Michelle Bardini T. Robson G. Burnstock 《Cell and tissue research》1999,296(3):599-605
In order to investigate whether purinoceptors are involved in the physiological renewal and regeneration of epithelia, we used immunohistochemical techniques on fresh frozen sections of various stratified squamous epithelial tissues (cornea, tongue, soft palate, oesophagus, vagina and footpad) of the rat and specific polyclonal antibodies to unique peptide sequences of P2X1-7 receptors. Only two of the antibodies, anti-P2X5 and anti-P2X7, reacted with epithelial structures. P2X5 immunoreactivity was mainly associated with the membranes of the proliferating and differentiating cell layers (spinous and granular layer) in both keratinised and non-keratinised epithelia and growing hair follicles. In contrast, P2X7 immunoreactivity was clearly associated with the keratinisation process, the staining being most intense in the upper keratinised and the exfoliated layers. These findings suggest, for the first time, that P2X5 and P2X7 receptors play an important role in the physiological turnover of continuously regenerating cells, and further, raise the possibility that they represent novel targets for the development of pharmacological tools of potential benefit for diseases of epithelial dysfunction. 相似文献
10.
Zemková H Balík A Jindrichová M Vávra V 《Physiological research / Academia Scientiarum Bohemoslovaca》2008,57(Z3):S23-S38
Purinergic P2X receptors represent a novel structural type of ligand-gated ion channels activated by extracellular ATP. So far, seven P2X receptor subunits have been found in excitable as well as non-excitable tissues. Little is known about their structure, mechanism of channel opening, localization, and role in the central nervous system. The aim of this work is to summarize recent investigations and describe our contribution to elucidating the structure of the ATP binding site and transmembrane domains of the P2X receptor, we also discuss the expression and physiological roles played by the ATP and P2X receptors in the anterior pituitary and hypothalamus. 相似文献
11.
12.
13.
14.
Jun-Wei Zeng Sai-Yu Cheng Xiao-Hong Liu Yan-Dong Zhao Zhi Xiao Geoffrey Burnstock Huai-Zhen Ruan 《Histochemistry and cell biology》2013,139(4):549-557
P2X receptors are ATP-gated cationic channels composed of seven cloned subunits (P2X1 –7). P2X3 homomultimer and P2X2/3 heteromultimer receptors expressed by primary afferent dorsal root ganglion (DRG) neurons are involved in pain processing. The aim of the study was to investigate the expression of the P2X5 receptor subunit in DRG in different species including mouse, rat, cat and guinea pig. Immunohistochemistry showed that P2X5 receptors exhibited low levels of immunostaining in rat DRG, but high levels in mouse and guinea pig. Only a few neurons were immunoreactive for P2X5 receptors in cat. In mouse DRG, the P2X5 receptor was expressed largely by medium-diameter neurons (42.9 %), less in small (29.3 %) and large (27.8 %) neurons. In contrast, in the guinea pig DRG, P2X5 receptor expression was greatest in small-diameter (42.6 %), less in medium- (36.3 %) and large-diameter (21.1 %) neurons. Colocalization experiments revealed that, in mouse DRG, 65.5, 10.9 and 27.1 % of P2X5 receptors were immunoreactive for NF-200, CGRP and calbindin, while only a few P2X5-immunoreactive (IR) neurons were coexpressed with IB4 or with NOS. In guinea pig DRG, a total of 60.5 and 40.5 % of P2X5-IR neurons were coexpressed with IB4 or with CGRP, while 20.3 and 24.5 % of P2X5 receptors were coexpressed with NF-200 or with NOS. Only a few P2X5-IR neurons were coexpressed with calbindin in guinea pig DRG. It will be of great interest to clarify the relative physiological and pathophysiological roles of P2X5 receptors. 相似文献
15.
ZHANG WANHUI YUNLONG ZHU FUZHOU WANG YUZHEN HU QI MEI CHAO ZHAO JIANGKANG CHEN 《Cell research》1995,5(2):197-207
The undecapeptide substanceP(SP) was shown to be intimately involved in both the structural and functional aspects of the anterior pituitary.Yet,in addition to its influences on hormonal secretion,SP may well possess more actions in this master gland.The present study was ftherefore aimed to investigate the effect of SP on the proliferation of rat anterior pituitary cells in primary culture,It was found that SP could dose-dependently increase the incorporation of tritiated thymidine(3H-TdR) into cultured anterior pituitary cells.Other mammalian tachykinins such as neurokinin A and neurokinin B had similar effect but to varying degrees.The equipotent analogue of SP,Norleucine^11-SP(Nle^11-SP),also acted likewise.with its action antagonizable by spantide,a SP receptor blocker.To further characterize the nature of cells responsive to the challenge of SP,immunocytochemical staining against S-100 protein and some adenohypophyseal hormones was performed alone or plus autoradiography.The results showed that the percentage of S-100 proteinimmunorective cells was apparently elevated by the addtion of Nle^11-Sp for 48h,which indicates a preferential proliferation of folliculo-stellate cells under the regime .This was confirmed by increases in immunocytochemical or autoradiographical labelling indices of anterior pituitary Substance P and anterior pituitary cell proliferation.Cells treated similarly.Taken together,These results reveal that the trophic action of SP observed previously in other tissues is also present at least in cultured rat anterior pituitary cells.with responding cells being predominantly folliculo-stellate cells as typified by S-100 proteinimmunoreactivity.Therefore,an intra-pituitary trophicaction of SP in vivo could be anticipated. 相似文献
16.
Somatic and axonal effects of ATP via P2X2 but not P2X7 receptors in rat thoracolumbar sympathetic neurones 总被引:2,自引:0,他引:2
Allgaier C Reinhardt R Schädlich H Rubini P Bauer S Reichenbach A Illes P 《Journal of neurochemistry》2004,90(2):359-367
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven. 相似文献
17.
Adenosine triphosphate (ATP) is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, alpha, beta methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors. 相似文献
18.
Matthew W. Grol Nattapon Panupinthu Jasminka Korcok Stephen M. Sims S. Jeffrey Dixon 《Purinergic signalling》2009,5(2):205-221
Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed. 相似文献
19.
Human P2X2 receptors (hP2X2) are strongly inhibited by zinc over the range of 2–100 μm, whereas rat P2X2 receptors (rP2X2) are strongly potentiated over the same range, and then inhibited by zinc over 100 μm. However, the biological role of zinc modulation is unknown in either species. To identify candidate regions controlling zinc inhibition in hP2X2 a homology model based on the crystal structure of zebrafish P2X4.1 was made. In this model, His-204 and His-209 of one subunit were near His-330 of the adjacent subunit. Cross-linking studies confirmed that these residues are within 8 Å of each other. Simultaneous mutation of these three histidines to alanines decreased the zinc potency of hP2X2 nearly 100-fold. In rP2X2, one of these histidines is replaced by a lysine, and in a background in which zinc potentiation was eliminated, mutation of Lys-197 to histidine converted rP2X2 from low potency to high potency inhibition. We explored whether the zinc-binding site lies within the vestibules running down the central axis of the receptor. Elimination of all negatively charged residues from the upper vestibule had no effect on zinc inhibition. In contrast, mutation of several residues in the hP2X2 middle vestibule resulted in dramatic changes in the potency of zinc inhibition. In particular, the zinc potency of P206C could be reversibly shifted from extremely high (∼10 nm) to very low (>100 μm) by binding and unbinding MTSET. These results suggest that the cluster of histidines at the subunit interface controls access of zinc to its binding site. 相似文献
20.
Schmidt Axel Joussen Sylvia Hausmann Ralf Gründer Stefan Wiemuth Dominik 《Purinergic signalling》2019,15(2):213-221
Purinergic Signalling - Extracellular adenosine triphosphate (ATP) regulates a broad variety of physiological functions in a number of tissues partly via ionotropic P2X receptors. Therefore, P2X... 相似文献