首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trisaccharide Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was enzymatically synthesized, within situ UDP-Gal regeneration. By combination in one pot of only four enzymes, namely, sucrose synthase, UDP-Glc 4-epimerase, UDP-Gal:GlcNAc 4-galactosyltransferase and UDP-Gal:Gal14GlcNAc 3-galactosyltransferase, Gal13Gal14GlcNAc1O-(CH2)8COOCH3 was formed in a 2.2 µmol ml–1 yield starting from the acceptor GlcNAc1O-(CH2)8COOCH3. This is an efficient and convenient method for the synthesis of the Gal13Gal14GlcNAc epitope which plays an important role in various biological and immunological processes.  相似文献   

2.
Summary Two specific -N-acetylglucosaminyltransferases involved in the branching and elongation of mucin oligosaccharide chains, namely, a 1,6 N-acetylglucosaminylsaminyltransferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3GalNAc-Mucin to yield Gal3(GlcNAc6)GalNAc-Mucin and a 3-N-acetylglucosaminyl transferase that transfers N-acetylglucosamine from UDP-N-acetylglucosamine to Gal3(GlcNAC6)GalNAc-mucin to yield GlcNAc3Gal3 (GlcNAc6)GalNAc-Mucin were purified from the microsomal fraction of swine trachea epithelium. The 1,6-N-acetylglucosaminyltransferase was purified about 21,800-fold by procedures which included affinity chromatography on DEAE columns containing bound asialo Cowper's gland mucin glycoprotein with Gal1,3GalNAc side chains. The apparent molecular weight estimated by gel filtration was found to be about 60 Kd. The purified enzyme showed a high specificity for Gal1,3GalNAc chains and the most active substrates were mucin glycoproteins containing these chains. The apparent Km of the 6-glucosaminyltrans-ferase for Cowper's gland mucin glycoprotein containing Gal1,3GalNAc chains was 0.53 µM; for UDP-N-acetylglucosamine, 12 µM; and for Gal 1,3GalNAc NO2ø, 4 mM. The activity of the 6-glucosaminyltransferase was dependent on the extent of glycosylation of the Gal3GalNAc chains in Cowper's gland mucin glycoprotein.The best substrate for the partially purified 3-Glucosaminyltransferase was Cowper's gland mucin glycoprotein containing Gal1,3(GlcNAc6)GalNAc side chains. This enzyme showed little or no activity with intact sialylated Cowper's gland mucin glycoprotein or derivatives of this glycoprotein containing GalNAc or Gal1,3GalNAc side chains.The radioactive oligosaccharides formed by these enzymes in large scale reaction mixtures were released from the mucin glycoproteins by treatment with alkaline borohydride, isolated by gel filtration on Bio-Gel P-6 and characterized by methylation analysis and sequential digestion with exoglycosidases. The oligosaccharide products formed by the 6- and 3-glucosaminyltransferases were shown to be Gal3(GlcNAC6) GalNAc and GlcNAc3 Gal3(GlcNAC6)GalNAc respectively.Taken collectively, these results demonstrate that swine trachea epithelium contains two specific N-acetylglucosaminyltransferases which catalyze the initial branching and elongation reactions involved in the synthesis of O-linked oligosaccharide chains in respiratory mucin glycoproteins. The first enzyme a 6-glucosaminyltransferase converts Gal3GalNAc chains in mucin glycoproteins to Gal3(GlcNAc6)GalNAc chains. This product is the substrate for a second 3-glucosaminyltransferase which converts the Gal3(GlcNAc6)GalNAc chains to GlcNAc3Gal(GlcNAc6)GalNAc chains in the glycoprotein. The 3-glucosaminyltransferase did not utilize Gal3GalNAc chains as a substrate and this results in an ordered sequence of addition of N-acetylglucosamine residues to growing oligosaccharide chains in tracheal mucin glycoproteins.Abbreviations NeuNAc N-acetylneuraminic acid - GalNAcol N-acetylgalactosaminitol - CGMG Cowper's gland mucin glycoprotein - GalNAc-CGMG Cowper's gland mucin glycoprotein containing GalNAc side chains O-glycosidically linked to serine or threonine - Gal3GalNAc-CGMC Cowper's gland mucin glycoprotein containing Gal3GalNAc side chains - MES 2-(N-morpholino) Ethane Sulfonic acid - PBS Phosphate Buffered Saline  相似文献   

3.
GlcNAc1-2Man and GlcNAc1-6Man were synthesized using the reverse hydrolysis activity of -N-acetylglucosaminidase from both jack beans and Bacillus circulans. In turn, Gal1-4GlcNAc1-2Man and Gal1-4GlcNAc1-6Man were synthesized regioselectively using the transglycosylation activity of -galactosidase from Diplococcus pneumoniae and B. circulans, respectively. These di- and trisaccharides are important components of complex type sugar chains and will be used as intermediates in our synthetic studies. Abbreviations: pNp--GlcNAc, p-nitrophenyl 2-acetamido-2-deoxy--D-glucopyranoside; pNp--Gal, p-nitrophenyl -D-galacto-pyranoside  相似文献   

4.
The major pentasaccharides Fuc(1-2)[GalNAc(1-3)]Gal(1-4)[Fuc(1-3)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-4)[Fuc(1-3)]Glc, which are normally present in the urine of bloodgroup A Leb and B Leb healthy subjects, were each found to be contaminated by a minor component when analysed by1H-NMR. The determination of these structures, Fuc(1-2) [GalNAc(1-3)]Gal(1-3)[Fuc(1-4)]Glc and Fuc(1-2) [Gal(1-3)]Gal(1-3)[Fuc(1-4)]Glc, was based on the results of methylation analysis and1H/13C-NMR spectroscopy.Abbreviations HPLC high performance liquid chromatography - GLC gas liquid chromatography - NMR nuclear magnetic resonance - COSY correlation spectroscopy - Gal d-galactopyranose - GalNAc 2-acetamido-2-deoxy-d-galactopyranose - Glc d-glucopyranose - Fuc l-fucopyranose - LNDFH I lacto-N-difucohexaose I (Leb determinant  相似文献   

5.
Radiolabelled GlcNAc beta 1-3(GlcNAc beta 1-6)Gal (1), GlcNAc beta 1-3)GlcNAc beta 1-6)Gal beta 1-OCH3 (4), GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4Glc (7), and GlcNAc beta 1-3(GlcNAc beta 1-6)Gal beta 1-4GlcNAc (10) were cleaved partially with jack bean beta-N-acetylhexosaminidase (EC 3.2.1.30), and the digests were analysed chromatographically. All four oligosaccharides were hydrolysed faster at the (1-6) branch, than at the (1-3) branch, but a high branch specificity was observed only with the glycan 4. The saccharides 1 and 7 resembled each other in the kinetics of the enzyme-catalysed release of their two non-reducing N-acetylglucosamine units, but the glycan 10 was rather different. The partial digestions made it possible to obtain radiolabelled GlcNAc beta 1-6Gal, GlcNAc beta 1-6Gal beta 1-OCH3, GlcNAc beta 1-6Gal beta 1-4Glc, and, in particular, GlcNAc beta 1-6Gal beta 1-4GlcNAc.  相似文献   

6.
A new approach for the highly specific preparation of L-serine conjugates of lactosamine and Gal1-3GalNAc is described. Thus, the L-serine derivative of lactosamine Gal1-4GlcNAc-O-(N-Z)-Ser-OEt, was obtained from lactose, employing GlcNAc-O-(N-Z)-Ser-OEt as acceptor and a yeast -galactosidase as catalyst Galp 1-3GalNAc-O-(N-Alloc)-Ser-OMe was obtained from lactose, employing GalNAc-O-(N-Alloc)-Ser-OMe as acceptor and -galactosidase from bovine testes as catalyst.  相似文献   

7.
The tetrasaccharides GalNAcß1-4[NeuAc2-3]Galß1-4Glc and GalNAcß1-4[NeuAc2-3]Galß1-4GlcNAc were synthesised by enzymic transfer of GalNAc from UDP-GalNAc to 3-sialyllactose (NeuAc2-3Galß1-4Glc) and 3-sialyl-N-acetyllactosamine (NeuAc2-3Galß1-4GlcNAc). The structures of the products were established by methylation and1H-500 MHz NMR spectroscopy. In Sda serological tests the product formed with 3-sialyl-N-acetyllactosamine was highly active whereas that formed with 3-sialyllactose had only weak activity.  相似文献   

8.
Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in 1–2 linkage to terminal Gal of type 3 (Gal1–3GalNAc) acceptors, and in 1–3 linkage to GlcNAc of type 2 (Gal1–4GlcNAc) acceptors. The 1–2 fucosyltransferase was active with Gal1–3GalNAc1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml–1) and Gal1–3GalNAc (K m=20 mM,V max=2.1 mU ml–1), whereas the 1–3 fucosyltransferase was active with Gal1–4GlcNAc (K m=23 mM,V max=1.1 mU ml–1). The products formed from Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fuc1–2Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4(Fuc1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.Abbreviations 2Fuc-T 1–2 fucosyltransferase - 3Fuc-T 1–3 fucosyltransferase - MeO-3Man 3-O-methyl-D-mannose - MeO-3Gal 3-O-methyl-D-galactose  相似文献   

9.
Incubation of synthetic Man\1-4GlcNAc-OMe, GalNAc1-4GlcNAc-OMe, Glc1-4GlcNAc-OMe, and GlcNAc1-4GlcNac-OMe with CMP-Neu5Ac and rat liver Gal1-4GlcNAc (2-6)-sialyltransferase resulted in the formation of Neu5Ac2-6Man1-4GlcNAc-OMe, Neu5Ac2-6GalNAc1-4GlcNAc-OMe, Neu5Ac2-6Glc1-4GlcNAc-OMe and Neu5Ac2-6GlcNAc1-4GlcNAc-OMe, respectively. Under conditions which led to quantitative conversion of Gal1-4GlcNAc-OEt into Neu5Ac2-6Gal1-4GlcNAc-OEt, the aforementioned products were obtained in yields of 4%, 48%, 16% and 8%, respectively. HPLC on Partisil 10 SAX was used to isolate the various sialyltrisaccharides, and identification was carried out using 1- and 2-dimensional 500-MHz1H-NMR spectroscopy.Abbreviations 2D 2-dimensional - CMP cytidine 5-monophosphate - CMP-Neu5Ac cytidine 5-monophospho--N-acetylneuraminic acid - COSY correlation spectroscopy - DQF double quantum filtered - HOHAHA homonuclear Hartmann-Hahn - MLEV composite pulse devised by M. Levitt - Neu5Ac N-acetylneuraminic acid - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid  相似文献   

10.
Three novel oligosaccharides of human infant faeces have been fully characterised by methylation analysis and 500/600 MHz 1H NMR spectroscopy including DQF-COSY, TQF-COSY, TOCSY and ROESY experiments. The oligosaccharides were shown to be lactose-based structures two of which were substituted at C-6 of Gal with either the Lex trisaccharide, Gal(β1–4)[Fuc(α1–3)]GlcNAc(β1-, or Neu5Ac(α2–6)Gal(β1–4)GlcNAc-(β1-. They differ from other free oligosaccharides previously isolated from the human by having the (1 → 6) linkage to Gal in the absence of a (1 → 3) branch. The third oligosaccharide has Neu5Ac(α2–6) linked to GlcNAc of the trisaccharide GlcNAc(β1–3)Gal(β1–4)Glc. This is a linear fragment of the disialylated tetrasaccharide sequence Neu5Ac(α2–3)Gal(β1–3)[Neu5Ac(α2–6)]GlcNAc(β1- found in the milk oligosaccharide disialyl LNT (the GlcNAc residue of the tetrasaccharide linked to lactose) and also of N-linked chains (GlcNAc linked to Man).  相似文献   

11.
Russian Journal of Bioorganic Chemistry - In a cohort of 106 donors, we analyzed correlations in the binding of natural antibodies to human glycans in a composition of the glycan array. Along with...  相似文献   

12.
To elucidate control mechanisms ofO-glycan biosynthesis in leukemia and to develop biosynthetic inhibitors we have characterized core 2 UDP-GlcNAc:Gal1-3GalNAc-R(GlcNAc to GalNAc) 6-N-acetylglucosaminyl-transferase (EC 2.4.1.102; core 2 6-GlcNAc-T) and CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase (EC 2.4.99.4; 3-SA-T), two enzymes that are significantly increased in patients with chronic myelogenous leukemia (CML) and acute myeloid leukemia (AML). We observed distinct tissue-specific kinetic differences for the core 2 6-GlcNAc-T activity; core 2 6-GlcNAc-T from mucin secreting tissue (named core 2 6-GlcNAc-T M) is accompanied by activities that synthesize core 4 [GlcNAc1-6(GlcNAc1-3)GalNAc-R] and blood group I [GlcNAc1-6(GlcNAc1-3)Gal-R] branches; core 2 6-GlcNAc-T in leukemic cells (named core 2 -GlcNAc-T L) is not accompanied by these two activities and has a more restricted specificity. Core 2 6-GlcNAc-T M and L both have an absolute requirement for the 4- and 6-hydroxyls ofN-acetylgalactosamine and the 6-hydroxyl of galactose of the Gal1-3GalNAc-benzyl substrate but the recognition of other substituents of the sugar rings varies, depending on the tissue. 3-sialytransferase from human placenta and from AML cells also showed distinct specificity differences, although the enzymes from both tissues have an absolute requirement for the 3-hydroxyl of the galactose residue of Gal1-3GalNAc-Bn. Gal1-3(6-deoxy)GalNAc-Bn and 3-deoxy-Gal1-3GalNAc-Bn competitively inhibited core 2 6-GlcNAc-T and 3-sialyltransferase activities, respectively.Abbreviations AFGP antifreeze glycoprotein - AML acute myeloid leukemia - Bn benzyl - CML chronic myelogenous leukemia - Fuc l-fucose - Gal, G d-galactose - GalNAc, GA N-acetyl-d-galactosamine - GlcNAc, Gn N-acetyl-d-glucosamine - HC human colonic homogenate - HO hen oviduct microsomes - HPLC high performance liquid chromatography - mco 8-methoxycarbonyl-octy - Me methyl - MES 2-(N-morpholino)ethanesulfonate - MK mouse kidney homogenate - onp o-nitrophenyl - PG pig gastric mucosal microsomes - pnp p-nitrophenyl - RC rat colonic mucosal microsomes - SA sialic acid - T transferase Enzymes: UDP-GlcNAc:Gal1-3GalNAc-R (GlcNAc to GalNAc) 6-N-acetylglucosaminyltransferase,O-glycan core 2 6-GlcNAc-transferase, EC 2.4.1.102; CMP-sialic acid: Gal1-3GalNAc-R 3-sialyltransferase,O-glycan 3-sialic acid-transferase, EC 2.4.99.4.  相似文献   

13.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   

14.
1. The enzymic synthesis of O-β-d-glucopyranosyl-(1→6)-d-galactose has been described and evidence for the structure presented. 2. It has been shown that the transglycosylase of A. niger provides a convenient means of synthesizing (1→6)-linked disaccharides.  相似文献   

15.
16.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

17.
Gal1-3GlcNAc (1) and Gal1-3GlcNAc-SEt (2) were synthesized on a 100 mg scale by the transgalactosylation reaction of bovine testes -galactosidase with lactose as donor andN-acetylglucosamine and GlcNAc-SEt as acceptors. In both cases the product mixtures contained unwanted isomers and were treated with -galactosidase fromEscherichia coli which has a different specificity, under conditions favouring hydrolysis, yielding besides the desired products, monosaccharides and traces of trisaccharides. The products were purified to >95% by gel filtration, with a final yield of 12% of 1 and 17% of 2, based on added acceptor. In a separate experiment Gal1-6GlcNAc-SEt (3) was synthesized by the transglycosylation reaction using -galactosidase fromEscherichia coli. No other isomers were detected. Compound 3 was purified by HPLC.  相似文献   

18.
We analysed the glycolipids of mouse thymocytes before and after Concanavalin A (Con A) or recombinant interleukin-2 (rIL-2) stimulation by TLC-immunostaining with carbohydrate-specific antiglycolipid antibodies. The thymocytes were cultured in serum-free medium in the presence of 500 ng ml–1 Con A, 10 U ml–1 rIL-2 or Con A plus rIL-2 for 6, 12, 24, 48, and 72 h, and were found to start proliferating 24 h after cultivation in the presence of Con A or Con A plus rIL-2, the maximum levels being reached at 72 h and 48 h, respectively, in a thymidine uptake experiment. The concentrations of II3Neu-Gg4Cer, Gg4Cer and IV3GalNAc-Gb4Cer after 48 h Con A stimulation were found to be at almost the original levels. Conversely, II3Neu-Gg3Cer, which was not detected in the thymocytes at the start, began to appear after 48 h stimulation with Con A and Con A plus rIL-2, and IV3Neu-Gg5Cer in the cells 48 h after stimulation with Con A and Con A plus rIL-2 has increased to 41 and 44 times higher than in the original cells, respectively, as judged on TLC-immunostaining with monoclonal antibody YHD-06, which detects the GalNAc1-4(NeuAc or NeuGc2-3)Gal-structure. These results indicate that the increased synthesis of both gangliosides, in other words, the activation ofN-acetylgalactosaminyltransferase, is associated with the mitogen-induced proliferation.N-Acetylneuraminic acid was the sole sialic acid in II3Neu-Gg3Cer which newly appeared in the cells on stimulation, whereas the sialic acid of IV3Neu-Gg5Cer was a mixture ofN-acetyl- andN-glycoloylneuraminic acids. This result may suggest that the substrates for the two differentN-acetylgalactosaminyltransferases must be different. This GalNAc1-4(NeuAc or NeuGc2-3)Gal-structure was also detected on the surface of the Con A or Con A plus rIL-2 stimulated mouse thymocytes on flow cytometric analysis of cells indirectly stained with monoclonal antibody YHD-06. Abbreviations: carbohydrate and glycolipid nomenclature and abbreviations follow the IUPAC-IUB recommendations or the nomenclature system of Svennerholm L. (1963)J Neurochem 10:613–23.  相似文献   

19.
20.
《Carbohydrate research》1987,163(1):63-72
Benzyl 2-acetamido-3-O-allyl-6-O-benzyl-2-deoxy-4-O-(3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl)- α-d-glucopyranoside (4) was obtained in high yield on using the silver triflate method in the absence of base. Compound 4 was converted in six steps into benzyl 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-d-glucopyranosyl)-6-O-benzyl-3-O-(carboxymethyl)-2-deoxy-α-d- glucopyranoside, which was coupled with the benzyl ester of l-α-aminobutanoyl-d-isoglutamine and the product hydrogenolyzed to afford the title compound. O-Benzylation of benzyl 2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-3-O-allyl-6-O-benzyl-2-deoxy-α-d-glucopyranoside with benzyl bromide and barium hydroxide in N,N-dimethylformamide is strongly exhanced by sonication of the reaction mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号