首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3′,5-diallyl-4′-methoxy-[1,1′-biphenyl]-2-yl morpholine-4-carboxylate (GS12021) inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB)/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK) α and the expression of sirtuin (SIRT) 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.  相似文献   

2.
Human megakaryoblastic cells (CMK line) are known to differentiate to mature megakaryocyte-like cells by treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). There are two isozymes of prostaglandin-forming cyclooxygenase enzyme. Constitutive cyclooxygenase-1 and inducible cyclooxygenase-2 were followed during differentiation of CMK cells. Treatment of the cells with 0.1 μM TPA for 4 days resulted in a 5–20-fold increase in cyclooxygenase activity. Northern and Western blot analyses revealed that cyclooxygenase-1 mRNA and protein increased in parallel with the enzyme activity. In contrast, cyclooxygenase-2 mRNA was detected only at 3 h. Furthermore, most of the increased cyclooxygenase activity was immunoprecipitated with anti-cyclooxygenase-1 antibody, and was not affected by a cyclooxygenase-2-specific inhibitor, NS-398. These results indicated that cyclooxygenase-1 rather than cyclooxygenase-2 was predominantly induced depending on TPA. The enzyme thus induced was localized by immunoelectron microscopy in nuclear envelope and endoplasmic reticulum of the CMK cells.  相似文献   

3.
4.
The potential application of anti-inflammatory and analgesic compounds in medication and therapeutic care have become of increasing interest. We purified and characterized two novel analgesic and anti-inflammatory peptides, VQ-5 and AQ-5, from the coelomic fluid of the earthworm (Eisenia foetida). Their primary structures were determined as VSSVQ and AMADQ, respectively. Both peptides, especially AQ-5, exhibited analgesic activity in mouse models of persistent neuropathic pain and inflammation. AQ-5 also inhibited tumor necrosis factor alpha and cyclooxygenase-2 production. The mitogen-activated protein kinase signaling pathway, which is involved in analgesic and anti-inflammatory functions, was inhibited by AQ-5. Thus, the analgesic and anti-inflammatory effects of these peptides, especially AQ-5, demonstrated their potential as candidates for the development of novel analgesic medicines.  相似文献   

5.
Phloridzin (phlorizin or phloretin 2′-O-glucoside) is known for blocking intestinal glucose absorption. We have investigated the anticarcinogenic effect of phloridzin and its novel derivatives using human cancer cell lines. We have synthesised novel acylated derivatives of phloridzin with six different long chain fatty acids by regioselective enzymatic acylation using Candida Antarctica lipase B. The antiproliferative effects of the new compounds were investigated in comparison with the parent compounds, phloridzin, aglycone phloretin, the six free fatty acids and chemotherapeutic drugs (sorafenib, doxorubicin and daunorubicin) using human hepatocellular carcinoma HepG2 cells, human breast adenocarcinoma MDA-MB-231 cells and acute monocytic leukemia THP-1 cells along with normal human and rat hepatocytes. The fatty acid esters of phloridzin inhibited significantly the growth of the two carcinoma and leukemia cells while similar treatment doses were not toxic to normal human or rat hepatocytes. The antiproliferative potency of fatty esters of phloridzin was comparable to the potency of the chemotherapeutic drugs. The fatty acid esters of phloridzin inhibited DNA topoisomerases IIα activity that might induce G0/G1 phase arrest, induced apoptosis via activation of caspase-3, and decreased ATP level and mitochondrial membrane potential in HepG2 cells. Based on the high selectivity on cancer cells, decosahexaenoic acid (DHA) ester of phloridzin was selected for gene expression analysis using RT2PCR human cancer drug target array. Antiproliferative effect of DHA ester of phloridzin could be related to the down regulation of anti-apoptotic gene (BCL2), growth factor receptors (EBFR family, IGF1R/IGF2, PDGFR) and its downstream signalling partners (PI3k/AKT/mTOR, Ras/Raf/MAPK), cell cycle machinery (CDKs, TERT, TOP2A, TOP2B) as well as epigenetics regulators (HDACs). These results suggest that fatty esters of phloridzin have potential chemotherapeutic effects mediated through the attenuated expression of several key proteins involved in cell cycle regulation, DNA topoisomerases IIα activity and epigenetic mechanisms followed by cell cycle arrest and apoptosis.  相似文献   

6.
In this study, the acid chlorides of pyrazolo[3,4-d]pyrimidine compounds were prepared and reacted with a number of nucleophiles. The novel compounds were experimentally tested via enzyme assay and they showed cyclooxygenase-2 inhibition activity in the middle micro molar range (4b had a COX-1 IC50 of 26 µM and a COX-2 IC50 of 34 µM, 3b had a COX-1 IC50 of 19 µM and a COX-2 IC50 of 31 µM, 3a had a COX-2 IC50 of 42 µM). These compounds were analyzed via docking and were predicted to interact with some of the COX-2 key residues. Our best hit, 4d (COX-1 IC50 of 28 µM, COX-2 IC50 of 23 µM), appears to adopt similar binding modes to the standard COX-2 inhibitor, celecoxib, proposing room for possible selectivity. Additionally, the resultant novel compounds were tested in several in vivo assays. Four compounds 3a (COX-2 IC50 of 42 µM), 3d, 4d and 4f were notable for their anti-inflammatory activity that was comparable to that of the clinically available COX-2 inhibitor celecoxib. Interestingly, they showed greater potency than the famous non-steroidal anti-inflammatory drug, Diclofenac sodium. In summary, these novel pyrazolo[3,4-d]pyrimidine analogues showed interesting anti-inflammatory activity and could act as a starting point for future drugs.  相似文献   

7.
The orphan nuclear receptor NR4A1 exhibits pro-oncogenic activity in cancer cell lines. NR4A1 activates mTOR signaling, regulates genes such as thioredoxin domain containing 5 and isocitrate dehydrogenase 1 that maintain low oxidative stress, and coactivates specificity protein 1 (Sp1)-regulated pro-survival and growth promoting genes. Transfection of renal cell carcinoma (RCC) ACHN and 786-O cells with oligonucleotides that target NR4A1 results in a 40–60% decrease in cell proliferation and induction of apoptosis. Moreover, knockdown of NR4A1 in RCC cells decreased bcl-2, survivin and epidermal growth factor receptor expression, inhibited of mTOR signaling, induced oxidative and endoplasmic reticulum stress, and decreased TXNDC5 and IDH1. We have recently demonstrated that selected 1,1-bis(3''-indolyl)-1-(p-substituted phenyl)methane (C-DIM) compounds including the p-hydroxyphenyl (DIM-C-pPhOH) and p-carboxymethyl (DIM-C-pPhCO2Me) analogs bind NR4A1 and act as antagonists. Both DIM-C-pPhOH and DIM-C-pPhCO2Me inhibited growth and induced apoptosis in ACHN and 786-O cells, and the functional and genomic effects of the NR4A1 antagonists were comparable to those observed after NR4A1 knockdown. These results indicate that NR4A1 antagonists target multiple growth promoting and pro-survival pathways in RCC cells and in tumors (xenograft) and represent a novel chemotherapy for treating RCC.  相似文献   

8.
Recent clinical trials raised concerns regarding the cardiovascular toxicity of selective cyclooxygenase-2 (COX-2) inhibitors. Many active dietary factors are reported to suppress carcinogenesis by targeting COX-2. A major question was accordingly raised: why has the lifelong use of phytochemicals that likely inhibit COX-2 presumably not been associated with adverse cardiovascular side effects. To answer this question, we selected a library of dietary-derived phytochemicals and evaluated their potential cardiovascular toxicity in human umbilical vein endothelial cells. Our data indicated that the possibility of cardiovascular toxicity of these dietary phytochemicals was low. Further mechanistic studies revealed that the actions of these phytochemicals were similar to aspirin in that they mainly inhibited COX-1 rather than COX-2, especially at low doses.  相似文献   

9.
We used the concept of bioisosteres to design and synthesize a novel series of dasatinib derivatives for the treatment of leukemia. Unfortunately, most of the dasatinib derivatives did not show appreciable inhibition against leukemia cell lines K562 and HL60. However, acrylamide compound 2c had comparable inhibitory activity with dasatinib against K562 cells (IC50?=?0.039?nM vs. 0.069?nM). And amide compound 2a and acrylamide compound 2c also had comparable inhibitory activity with dasatinib against the leukemia cell line HL60 (IC50?=?0.25?nM and 0.26?nM vs. 0.11?nM). Against the leukemia progenitor cell line KG1a, triazole compounds 15a and 15d15f and oxadiazole compounds 24a24d were more potent than dasatinib. In particular, the hydroxyl compounds 15a and 24a were about 64 and 180 fold more potent than dasatinib against KG1a cells (IC50?=?0.14?μM and 0.05?μM vs. 8.98?μM). Compounds 15a and 24a also inhibited colony formation in MCF-7 cells and inhibited cell migration in the cell wound scratch assay in B16BL6 cells. Moreover, hydroxyl compounds 15a and 24a had low toxicity in vivo.  相似文献   

10.
11.
A library of modified VEGFR-2 inhibitors was designed as VEGFR-2 inhibitors. Virtual screening was conducted for the hypothetical library using in silico docking, ADMET, and toxicity studies. Four compounds exhibited high in silico affinity against VEGFR-2 and an acceptable range of the drug-likeness. These compounds were synthesised and subjected to in vitro cytotoxicity assay against two cancer cell lines besides VEGFR-2 inhibitory determination. Compound D-1 showed cytotoxic activity against HCT-116 cells almost double that of sorafenib. Compounds A-1, C-6, and D-1 showed good IC50 values against VEGFR-2. Compound D-1 markedly increased the levels of caspase-8 and BAX expression and decreased the anti-apoptotic Bcl-2 level. Additionally, compound D-1 caused cell cycle arrest at pre-G1 and G2-M phases in HCT-116 cells and induced apoptosis at both early and late apoptotic stages. Compound D-1 decreased the level of TNF-α and IL6 and inhibited TNF-α and IL6. MD simulations studies were performed over 100 ns.  相似文献   

12.
Previous investigations demonstrated that pyruvate protects human keratinocytes against cell damage stemming from exposure to ultraviolet B (UVB) radiation. This study endeavoured to elucidate the protective capacity of aromatic pyruvates (e.g., phenylpyruvate (PPyr), 4-hydroxyphenylpyruvate (HPPyr), and indole-3-pyruvate (IPyr)) against UVB-induced injury to skin cells, both in vitro and in vivo. Cultured human HaCaT keratinocytes were irradiated with UVB light (60 mJ/cm2) and maintained with or without test compounds (1–25 mM). In addition, the dorsal skin of hairless mice (HR-1) was treated with test compounds (100 µmol) and exposed to UVB light (1 J/cm2) for two times. The ability of the test compounds to ameliorate UVB-induced cytotoxicity and inflammation was then assessed. Aromatic pyruvates reduced cytotoxicity in UVB-irradiated HaCaT keratinocytes, and also diminished the expression of interleukin 1β (IL-1β) and interleukin 6 (IL-6). IPyr was more efficacious than either PPyr or HPPyr. Furthermore, only IPyr inhibited cyclooxygenase-2 (Cox-2) expression at both the mRNA and the protein level in UVB-treated keratinocytes. Topical application of IPyr to the dorsal skin of hairless mice reduced the severity of UVB-induced skin lesions, the augmentation of dermal thickness, and transepithelial water loss. Overproduction of IL-1β and IL-6 in response to UVB radiation was also suppressed in vivo by the topical administration of IPyr. These data strongly suggest that IPyr might find utility as a UVB-blocking reagent in therapeutic strategies to lessen UVB-induced inflammatory skin damage.  相似文献   

13.
The isoprostanes are a group of biologically active arachidonic acid metabolites initially thought to be formed under conditions of oxidative stress and independently of cyclooxygenase. However, recent studies have demonstrated isoprostane production under conditions in which cyclooxygenase is intentionally activated/induced. Here we describe for the first time formation of isoprostanes by human vascular cells via independent pathways of oxidative stress and cyclooxygenase induction. We compared the release of the isoprostane with that of the traditional prostaglandin, prostaglandin E2. Cyclooxygenase-2 induction was confirmed by Western blot. When cells were stimulated with cytokines, the release of isoprostanes was inhibited by the cyclooxygenase-1 and -2 inhibitor indomethacin as well by as the cyclooxygenase-2 selective inhibitor L-745,337. However, treatment of cells with the superoxide-producing enzyme xanthine oxidase also resulted in isoprostane release, which was not affected by cyclooxygenase inhibition, unlike PGE2 release under the same condition. Thus, two independent pathways relating to oxidative stress and cyclooxygenase-2 induction form isoprostanes. These findings may have particular importance in diseases such as sepsis and ARDS in which oxidant stress occurs and cyclooxygenase is induced.  相似文献   

14.
1-((2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methyl)-4-substituted-phenylpiperazine moiety was prepared and has been found to be a new and selective ligand for the enzyme cyclooxygenase-2 (COX-2). The biological activity of compound 3k as anti-inflammatory agent was further investigated both in vitro and in vivo. Notably, compound 3k exhibited the best anti-inflammatory activity among the eleven designed compounds with no toxicity, as determined by the ulcerogenic activity. Computational docking studies also showed that compound 3k has interaction with COX-2 key residues in the active site. Compound 3k maybe a new anti-inflammatory lead-candidate as powerful and novel non-ulcerogenic.  相似文献   

15.
Isomeric iodinated derivatives of nimesulide, with an iodine substituent on the phenoxy ring, were prepared with the aim of identifying potential candidate compounds for the development of imaging agents targeting cyclooxygenase-2 (COX-2) in the brain. Both the experimental log P7.4 and pKa values for these iodinated analogs were in the acceptable range for passive brain penetration. The para-iodo-substituted analog was a more potent and selective COX-2 inhibitor than nimesulide, with a potency that was comparable to the reference drug, celecoxib. Iodination at the ortho- or meta-position of the phenoxy ring was associated with a substantial loss of COX-2 inhibitory activity. Transport studies across Caco-2 cell monolayers in the presence and absence of a P-glycoprotein (P-gp) inhibitor, verapamil, indicated that the para-iodo-substituted analog was not a P-gp transport substrate; this feature is a prerequisite for potential in vivo brain imaging compounds. The para-iodo-substituted analog of nimesulide appears to be an attractive candidate for the development of radioiodine-labeled tracers for in vivo brain imaging of COX-2 levels.  相似文献   

16.
BackgroundA major problem of cancer treatment is the development of multidrug resistance (MDR) to chemotherapy. MDR is caused by different mechanisms such as the expression of the ABC-transporters P-glycoprotein (P-gp, MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). These transporters efflux xenobiotic toxins, including chemotherapeutics, and they were found to be overexpressed in different cancer types.PurposeIdentification of novel molecules that overcome MDR by targeting ABC-transporters.MethodsResazurin reduction assay was used for cytotoxicity test. AutoDock 4.2. was used for molecular docking. The function of P-gp and BCRP was tested using a doxorubicin uptake assay and an ATPase assay. ROS generation was detected using flow cytometry for the measurement of H2DCFH-DA fluorescence. Annexin/PI staining was applied for the detection of apoptosis. Bioinformatic analyses were performed using LigandScout 3.12. software and DataWarrior software.ResultsIn our search for new molecules that selectively act against resistant phenotypes, we identified isopetasin and S-isopetasin, which are bioactive natural products from Petasites formosanus. They exerted collateral sensitivity towards leukemia cells with high P-gp expression in CEM/ADR5000 cells, compared to sensitive wild-type CCRF-CEM leukemia cells. Also, they revealed considerable activity towards breast cancer cells overexpressing breast cancer resistance protein, MDA-MB-231-BCRP clone 23. This motivated us to investigate whether the function of P-gp was inhibited. In-silico results showed the compounds bound with high affinity and interacted with key amino acid residues in P-gp . Then, we found that the two compounds increased doxorubicin accumulation in P-gp overexpressing CEM/ADR5000 by three-fold compared to cells without inhibitor. P-gp-mediated drug efflux was ATP-dependent. Isopetasin and S-isopetasin increased the ATPase activity of human P-gp in a comparable fashion as verapamil used as control P-gp inhibitor. As isopetasin and S-isopetasin exerted dual roles, first as cytotoxic compounds and then as P-gp inhibitors, we suggested that their P-gp inhibition is part of a larger complex of mechanisms to induce cell death in cancer patients. P-gp dysfunction induces mitochondrial stress to generate ATP. Upon continuing stress by P-gp inhibition, the mitochondria generate reactive oxygen species (ROS). Initially established for verapamil, this theory was validated in the present study for isopetasin and S-isopetasin, as treatment with the two candidates increased ROS levels in CEM/ADR5000 cells followed by apoptosis.ConclusionOur study highlights the importance of isopetasin and S-isopetasin as novel ROS-generating and apoptosis-inducing P-gp inhibitors.  相似文献   

17.
Our previous studies found that 4 compounds, namely pseudohypericin, amentoflavone, quercetin, and chlorogenic acid, in Hypericum perforatum ethanol extract synergistically inhibited lipopolysaccharide (LPS)-induced macrophage production of prostaglandin E2 (PGE2). Microarray studies led us to hypothesize that these compounds inhibited PGE2 production by activating suppressor of cytokine signaling 3 (SOCS3). In the current study, siRNA was used to knockdown expression of SOCS3 in RAW 264.7 macrophages and investigated the impact of H. perforatum extract and the 4 compounds on inflammatory mediators and cytokines. It was found that the SOCS3 knockdown significantly compromised the inhibition of PGE2 and nitric oxide (NO) by the 4 compounds, but not by the extract. The 4 compounds, but not the extract, decreased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), while both lowered interleukine-1β. SOCS3 knockdown further decreased IL-6 and TNF-α. Pseudohypericin was the major contributor to the PGE2 and NO inhibition in cells treated with the 4 compounds, and its activity was lost with the SOCS3 knockdown. Cyclooxygenase-2 (COX-2) and inducible NO synthase protein expression were not altered by the treatments, while COX-2 activity was decreased by the extract and the 4 compounds and increased by SOCS3 knockdown. In summary, it was demonstrated that the 4 compounds inhibited LPS-induced PGE2 and NO through SOCS3 activation. The reduction of PGE2 can be partially attributed to COX-2 enzyme activity, which was significantly elevated with SOCS3 knockdown. At the same time, these results also suggest that constituents in H. perforatum extract were alleviating LPS-induced macrophage response through SOCS3 independent mechanisms.  相似文献   

18.
19.
A series of novel N-phenylbenzamide-4-methylamine acridine derivatives were designed and synthesized based initially on the structure of amsacrine (m-AMSA). Molecular docking suggested that the representative compound 9a had affinity for binding DNA topoisomerase (Topo) II, which was comparable with that of m-AMSA, and furthermore that 9a could have preferential interactions with Topo I. After synthesis of 9a and analogues 9b-9f, these were all tested in vitro and the synthesized compounds displayed potent antiproliferative activity against three different cancer cell lines (K562, CCRF-CEM and U937). Among them, compounds 9b, 9c and 9d exhibiting the highest activity with IC50 value ranging from 0.82 to 0.91 μM against CCRF-CEM cells. In addition, 9b and 9d also showed high antiproliferative activity against U937 cells, with IC50 values of 0.33 and 0.23 μM, respectively. The pharmacological mechanistic studies of these compounds were evaluated by Topo I/II inhibition, western blot assay and cell apoptosis detection. In summary, 9b effectively inhibited the activity of Topo I/II and induced DNA damage in CCRF-CEM cells and, moreover, significantly induced cell apoptosis in a concentration-dependent manner. These observations provide new information and guidance for the structural optimization of more novel acridine derivatives.  相似文献   

20.
Momordica charantia L., commonly known as bitter melon, belongs to the Cucurbitaceae family. Various in vitro and in vivo studies have indicated that extracts of bitter melons have anti-diabetic properties. However, very little is known about the specific purified compounds responsible for these antidiabetic properties. In the present study, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, charantal, charantoside XI, and 25ξ-isopropenylchole-5, 6-ene-3-O-d-glucopyranoside were isolated from bitter melon fruit. The structures of the purified compounds were elucidated by HR-ESIMS, 1D, and 2D NMR experiments. All compounds exhibited significant inhibition of α-amylase and α-glucosidase comparable to acarbose. Molecular docking studies demonstrated that purified compounds were able to bind to the active sites of proteins. Additionally, the purified compounds showed significant anti-inflammatory activity, downregulating the expression of NF-κB, iNOS, IL-6, IL-1β, TNF-α, and Cox-2 in lipopolysaccharide-activated macrophage RAW 264.7 cells. Our findings suggest that the purified compounds have potential anti-diabetic and anti-inflammatory activities and therefore hold promise for the development of plant-based management for diabetic and inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号