首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acridin-3,6-dialkyldithiourea hydrochlorides (AcrDTUs) have been evaluated as a new group of photosensitizers (PSs) for photodynamic antitumor therapy (PDT). Mouse leukemia cells L1210 were used for testing of AcrDTUs as the new PSs. The irradiation (UV-A light (365 nm), 1.05 J/cm2) increased cytotoxicity of all derivatives against L1210 cells more than ten times. The highest photocytotoxicity was found for propyl-AcrDTU with IC50 = 0.48 ± 0.03 μM after 48 h incubation. A generation of the superoxide radical anion upon UV-A irradiation of propyl-AcrDTU was confirmed by in situ photochemical EPR experiments. To explain a mechanism of photocytotoxic action of AcrDTUs, an intracellular distribution of propyl-AcrDTU has been studied. It was found that AcrDTU in non-irradiated cells was not present in their nucleus but in the lysosomes and partly in the mitochondria, and sequestration of propyl-AcrDTU was dependent on pH in lysosomes. After irradiation, the cell death was induced by oxidative damage of lysosomal and mitochondrial membranes. Concerning the cell cycle, flow cytometry after PDT with propyl-AcrDTU showed a significant increase of the cells in the subG0 phase. Observed signs of necrosis, apoptosis, and autophagy indicate that PDT/AcrDTU leads to multiple cell death types (caspase independent apoptosis, necrosis, and autophagy).  相似文献   

2.
Photodynamic therapy (PDT) represents a promising method for treatment of cancerous tumors. The chemical and physical properties of used photosensitizer play key roles in the treatment efficacy. In this study, a novel photosensitizer, Chlorin-H [-13,15-N-(cyclohexyl)cycloimide] which displayed a characteristic long wavelength absorption peak at 698 nm was synthesized. Following flash photolysis with 355 nm laser, Chlorin-H is potent to react with O2 and then produce 1O2. This finding indicates that Chlorin-H takes its effects through type II mechanism in PDT. Generally, Chlorin-H is localized in mitochondria and nucleus of cell. After light irradiation with 698 nm laser, it can kill many types of cell, inhibit cell proliferation and colony formation, suppress cancer cell invasiveness and trigger apoptosis via the mitochondrial pathway in A549 cells in vitro. In addition, Chlorin-H–PDT can destroy A549 tumor in nude mice and a necrotic scab was formed eventually. The expression levels of many genes which regulated cell growth and apoptosis were determined by RT-PCR following Chlorin-H–PDT. The results showed that it either increased or decrease. Among which, the expression level of TNFSF13, a member of tumor necrosis factor superfamily, increased significantly. Silencing of TNFSF13 caused by RNA interference decreased the susceptibility of A549 cells to Chlorin-H–PDT. In general, Chlorin-H is an effective antitumor photosensitizer in vitro and in vivo and is worthy of further study as a new drug candidate. TNFSF13 will be an important molecular target for the discovery of new photosensitizers.  相似文献   

3.
The synthesis of several aminosquaraine cationic dyes displaying strong absorption within the so-called phototherapeutic window (650–850 nm) is described. Their cytotoxicity, under dark and illuminated conditions, was tested against several human tumor cell lines (breast, lung, cervical and hepatocellular carcinomas) and non-tumor porcine liver primary cells. All compounds showed to inhibit the growth of the tumor cells upon irradiation more than in the absence of light, in more or less extension, clearly exhibiting photodynamic activity. The photosensitizing ability against some cell lines, together with the low toxicity for the non-tumor primary PLP2 cells displayed by some of the compounds synthetized, turns them into potential candidates as photosensitizers for PDT.  相似文献   

4.
Phthalocyanine-nanoparticle conjugates have been designed and synthesised for the delivery of hydrophobic photosensitizers for photodynamic therapy (PDT) of cancer. The phthalocyanine photosensitizer stabilized gold nanoparticles have an average diameter of 2-4 nm. The synthetic strategy interdigitates a phase transfer reagent between phthalocyanine molecules on the particle surface that solubilises the hydrophobic photosensitizer in polar solvents enabling delivery of the nanoparticle conjugates to cells. The phthalocyanine is present in the monomeric form on the nanoparticle surface, absorbs radiation maximally at 695 nm and catalytically produces the cytotoxic species singlet oxygen with high efficiency. These properties suggest that the phthalocyanine-nanoparticle conjugates are ideally suited for PDT. In a process that can be considered as cancer therapy using a 'Trojan horse', when the nanoparticle conjugates are incubated with HeLa cells (a cervical cancer cell line), they are taken up thus delivering the phthalocyanine photosensitizer directly into the cell interior. Irradiation of the nanoparticle conjugates within the HeLa cells induced substantial cell mortality through the photodynamic production of singlet oxygen. The PDT efficiency of the nanoparticle conjugates, determined using colorimetric assay, was twice that obtained using the free phthalocyanine derivative. Following PDT with the nanoparticle conjugates, morphological changes to the HeLa cellular structure were indicative of cell mortality via apoptosis. Further evidence of apoptosis was provided through the bioluminescent assay detection of caspase 3/7. Our results suggest that gold nanoparticle conjugates are an excellent vehicle for the delivery of surface bound hydrophobic photosensitizers for efficacious photodynamic therapy of cultured tumour cells.  相似文献   

5.
Three new water-soluble chlorin derivatives 3, 5 and 8 for potential use as photosensitizers in photodynamic therapy (PDT) for cancer were synthesized from photoprotoporphyrin IX dimethyl ester (1). The in vivo biodistribution and clearance of chlorin derivatives 3, 5 and 8 were investigated in tumor-bearing mice. Iminodiacetic acid derivative 8 showed the greatest tumor-selective accumulation among the new chlorin derivatives with maximum accumulation in tumor tissue at 3 h after intravenous injection and rapid clearance from normal tissues within 24 h after injection. The in vivo therapeutic efficacy of PDT using 8 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3 h after injection of 8. Tumor growth was significantly inhibited by PDT using 8. These results indicate that iminodiacetic acid derivative 8 is useful as a new photosensitizer to overcome the disadvantages of photosensitizers that are currently in clinical use.  相似文献   

6.
Chlorins, a class of plant porphyrins, are perspective as photosensitizing agents due to light absorption in the long wavelength spectral region and deeper photodamage of tissues. Aiming at optimization of antitumour properties of chlorins, we synthesized a series of boronated derivatives of chlorin e6 and their complexes containing Zn(II), Pd(II) or Sn(IV). The compounds were synthesized by alkylation of amino or hydroxy derivatives of chlorin e6 with 1-trifluoromethanesulfonylmethyl-o-carborane. Chlorin e6 13(1)-N-{2-[N-(o-carboran-1-yl)methyl]aminoethyl}amide-15(2), 17(3)-dimethyl ester (compound 5) formed complexes with serum albumin, a major porphyrin carrier. The binding constant of these complexes was ~4 times bigger than the respective value for the complexes of albumin with boron-free aminochlorin e6. Compound 5 potently sensitized rat fibroblasts to illumination with monochromatic red light: >98% of cells were necrotic by 24 h post-illumination with 1 μM of 5. This compound demonstrated high efficacy in photodynamic therapy of rat M-1 sarcoma. After PDT with 25 mg/kg of 5 the residual tumours were significantly smaller than in animals subjected to PDT with equal concentration of boron-free aminochlorin e6. No signs of general toxicity were detectable after PDT with 5. Thus, boronation can enhance the potency of chlorins in PDT, in particular, due to an increased binding to albumin. Our data expand the therapeutic applicability of boronated chlorins beyond boron neutron capture therapy; these agents emerge as dual efficacy photoradiosensitizers.  相似文献   

7.
A series of optical amino acid diosgenyl esters and diosgenyl salicylate conjugates were designed and synthesized to develop new anticancer and anti-inflammatory agents. The analogue 9c that contains an 6-aminohexanoic acid residue at C-3 of diosgenin exhibits higher potency against all three tumor cell lines with IC50 values ranging from 4.7 μM in C26 cells to 14.6 μM in Hep G2 cells. In addition, seven of newly synthesized compounds significantly inhibit xylene-induced ear edema and exhibit comparable or better anti-inflammatory activities than those of diosgenin and aspirin. Furthermore, preliminary structure–activity relationship studies demonstrate that diosgenyl salicylate conjugates have stronger anti-inflammatory activities than amino acid diosgenyl esters.  相似文献   

8.
Photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to generate reactive species that kill tumor and tumor vasculature cells. Nitric oxide produced by these cells could be procarcinogenic by inhibiting apoptosis or promoting angiogenesis and tumor growth. The purpose of this study was to determine whether tumor cells upregulate NO as a cytoprotective measure during PDT. Breast tumor COH-BR1 cells sensitized in their mitochondria with 5-aminolevulinic acid (ALA)-derived protoporphyrin IX died apoptotically after irradiation, ALA- and light-only controls showing no effect. Western analysis revealed that inducible nitric oxide synthase (iNOS) was upregulated > 3-fold within 4 h after ALA/light treatment, whereas other NOS isoforms were unaffected. Exposing cells to a NOS inhibitor (L-NAME or 1400W) during photochallenge enhanced caspase-3/7 activation and apoptotic killing up to 2- to 3-fold while substantially reducing chemiluminescence-assessed NO production, suggesting that this NO was cytoprotective. Consistently, the NO scavenger cPTIO enhanced ALA/light-induced caspase-3/7 activation and apoptotic kill by > 2.5-fold. Of added significance, cells could be rescued from 1400W-exacerbated apoptosis by an exogenous NO donor, spermine-NONOate. This is the first reported evidence for increased tumor cell resistance due to iNOS upregulation in a PDT model. Our findings indicate that stress-elicited NO in PDT-treated tumors could compromise therapeutic efficacy and suggest NOS-based pharmacologic interventions for preventing this.  相似文献   

9.
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens.  相似文献   

10.
The present study describes the characterization and evaluation of novel anticancer conjugates, 2,6-diisopropylphenol–docosahexaenoate (PP–DHA), and its analogues including 2,4-diisopropylphenol–docosahexaenoate (DIPP–DHA), 2-isopropylphenol–docosahexaenoate (IPP–DHA), 2-cyclohexanephenol-docosahexaenoate (CHP–DHA) and phenol–docosahexaenoate (P–DHA) on breast cancer cell lines. Representative breast cancer cell lines, based on estrogen α receptor (ER) and oncogene Her-2 expression, were used and include MDA-MB-231 (ER-negative, Her-2-negative), MCF-7 (ER-positive, Her-2-negative) AU565 (ER-negative, Her-2-positive) and MDA-MB-361 (ER-positive, Her-2-positive). The PP–DHA conjugate significantly inhibited cell growth and induced cell loss in the breast cancer cell lines similarly; however, this conjugate was not effective against normal mammary epithelial cells. The effect of various conjugates were in PP–DHA > IPP–DHA > DIPP–DHA > CHP–DHA >> P–DHA order. PP–DHA and IPP–DHA conjugates were stable in human and mouse serum. Furthermore, the non-hydrolyzable amide-linked conjugate analogues affected breast cancer cells in a manner similar to that of the ester-linked conjugates. This suggests that ester-linked PP–DHA and IPP–DHA conjugates were stable during treatment to breast cancer cells due to structural hindrance. PP–DHA did not affect PPARα or PPARγ activities but its anticancer effects appear to be mediated in part though the inhibition of histone deacetylase (HDAC) activity. Further experiments are needed to confirm their molecular target and to test the effectiveness of these compounds in an in vivo model for their anticancer properties. In conclusion, these results suggest that the novel PP–DHA and IPP–DHA conjugates and their amide derivatives may be useful for the treatment of breast cancer.  相似文献   

11.
Seven polyamine conjugates of a tri(p-carboranylmethylthio)tetrafluorophenylporphyrin were prepared in high yields by sequential substitution of the p-phenyl fluoride of tetrakis(pentafluorophenyl)porphyrin (TPPF), and investigated as boron delivery agents for boron neutron capture therapy (BNCT). The polyamines used were derivatives of the natural-occurring spermine with different lengths of the carbon chains, terminal primary amine groups and, in two of the conjugates, additional aminoethyl moieties. A tri(polyethylene glycol) conjugate was also synthesized for comparison purposes. The polyamine conjugates showed low dark cytotoxicity (IC50 >400 μM) and low phototoxicity (IC50 >40 μM at 1.5 J/cm2). All polyamine conjugates, with one exception, showed higher uptake into human glioma T98G cells (up to 12-fold) than the PEG conjugate, and localized preferentially in the cell ER, Golgi and the lysosomes. Our results show that spermine derivatives can serve as effective carriers of boronated porphyrins for the BNCT of tumors.  相似文献   

12.
We have developed a series of novel photosensitizers which have potential for anticancer photodynamic therapy (PDT). Photosensitizers include zinc phthalocyanine tetra-sulphonic acid and a family of derivatives with amino acid substituents of varying alkyl chain length and degree of branching. Subcellular localization of these photosensitizers at the phototoxic IC(50) concentration in human cervical carcinoma cells (SiHa Cells) was similar to that of the lysosomal dye Lucifer Yellow. Subsequent nuclear relocalization was observed following irradiation with 665nm laser light. The PDT response was characterized using the Sulforhodamine B cytotoxicity assay. Flow cytometry was used for both DNA cell cycle and dual Annexin V-FITC/propidium iodide analysis. Phototoxicity of the derivatives was of the same order of magnitude as for tetrasulphonated phthalocyanine but with an overall trend of increased phototoxicity with increasing amino acid chain length. Our results demonstrate cell death, inhibition of cell growth, and G(0)/G(1) cell cycle arrest during the phthalocyanine PDT-mediated response.  相似文献   

13.
Adhesion is a primordial cell function that, among others, regulates inflammation, metastasis, and tissue repair. To understand how these events could be affected by photodynamic therapy (PDT), we studied the effects of PDT on human foreskin fibroblast (HFF) adhesion to bovine collagen type I, human vitronectin or fibronectin. PDT, using benzoporphyrin derivative monoacid ring A (verteporfin) as the photosensitizer, inhibited cell adhesion in a drug dose-dependent manner, with no significant difference among matrices. The drug dose that killed 90% of cells within 20 h post-treatment inhibited HFF adhesion by 55%–68%. However, 45 min following PDT, a time period corresponding to that of the adhesion assay, HFF membrane integrity remained unaltered. In addition, cell surface expression of integrins was not modified for at least 2 h following PDT. Western blots of cell lysates, using the anti-phosphotyrosine 4G10 monoclonal antibody, revealed that PDT prevented the adhesion-induced phosphorylation of 110–130 kDa proteins. Immunoblots of cell lysates immunoprecipitated with antibodies to focal adhesion kinase suggested that its phosphorylation was suppressed by PDT. These results demonstrate that PDT inhibits cell adhesion and affects integrin signalling without modifying cell membrane integrity or integrin expression.  相似文献   

14.
Extended thio- and selenorhodamines with a linear or angular fused benzo group were prepared. The absorption maxima for these compounds fell between 640 and 700 nm. The extended rhodamines were evaluated for their potential as photosensitizers for photodynamic therapy in Colo-26 cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their dark and phototoxicity toward Colo-26 cells, and for their co-localization with mitochondrial-specific agents in Colo-26 and HUT-78 cells. The angular extended rhodamines were effective photosensitizers toward Colo-26 cells with 1.0 J cm−2 laser light delivered at λmax ± 2 nm with values of EC50 of (2.8 ± 0.4) × 10−7 M for sulfur-containing analogue 6-S and (6.4 ± 0.4) × 10−8 M for selenium-containing analogue 6-Se. The linear extended rhodamines were effective photosensitizers toward Colo-26 cells with 5 and 10 J cm−2 of broad-band light (EC50’s  2.4 × 10−7 M).  相似文献   

15.
Targeting tumor vasculature represents an intriguing therapeutic strategy in the treatment of cancer. In an effort to discover new vascular disrupting agents with improved water solubility and potentially greater bioavailability, various amino acid prodrug conjugates (AAPCs) of potent amino combretastatin, amino dihydronaphthalene, and amino benzosuberene analogs were synthesized along with their corresponding water-soluble hydrochloride salts. These compounds were evaluated for their ability to inhibit tubulin polymerization and for their cytotoxicity against selected human cancer cell lines. The amino-based parent anticancer agents 7, 8, 32 (also referred to as KGP05) and 33 (also referred to as KGP156) demonstrated potent cytotoxicity (GI50 = 0.11–40 nM) across all evaluated cell lines, and they were strong inhibitors of tubulin polymerization (IC50 = 0.62–1.5 μM). The various prodrug conjugates and their corresponding salts were investigated for cleavage by the enzyme leucine aminopeptidase (LAP). Four of the glycine water-soluble AAPCs (16, 18, 44 and 45) showed quantitative cleavage by LAP, resulting in the release of the highly cytotoxic parent drug, whereas partial cleavage (<10–90%) was observed for other prodrugs (15, 17, 24, 38 and 39). Eight of the nineteen AAPCs (1316, 4245) showed significant cytotoxicity against selected human cancer cell lines. The previously reported CA1-diamine analog and its corresponding hydrochloride salt (8 and 10, respectively) caused extensive disruption (at a concentration of 1.0 μM) of human umbilical vein endothelial cells growing in a two-dimensional tubular network on matrigel. In addition, compound 10 exhibited pronounced reduction in bioluminescence (greater than 95% compared to saline control) in a tumor bearing (MDA-MB-231-luc) SCID mouse model 2 h post treatment (80 mg/kg), with similar results observed upon treatment (15 mg/kg) with the glycine amino-dihydronaphthalene AAPC (compound 44). Collectively, these results support the further pre-clinical development of the most active members of this structurally diverse collection of water-soluble prodrugs as promising anticancer agents functioning through a mechanism involving vascular disruption.  相似文献   

16.
This communication explains the biosynthesis of stable silver nanoparticles (AgNPs) from Melia azedarach and its cytotoxicity against in vitro HeLa cells and in vivo Dalton's ascites lymphoma (DAL) mice model. The AgNPs synthesis was determined by UV–visible spectrum and it was further characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) analysis. Zeta potential analysis revealed stable AgNPs at ?24.9 mV. UV visible spectrum indicated an absorption peak at 436 nm which reflects its specific Surface Plasmon Resonance (SPR). Biosynthesized AgNPs were predominantly cubical and spherical with an average particle size of 78 nm approximately as observed through SEM and DLS analysis, respectively. Cytotoxicity of biosynthesized AgNPs against in vitro Human epithelial carcinoma cell line (HeLa) showed a dose–response activity. Lethal dose (LD50) value was found to be 300 μg/mL of AgNPs against HeLa cell line. Cytotoxicity against normal continuous cell line human breast lactating, donor 100 (HBL 100) was found only in increased concentration of both AgNPs and 5-FU. In addition, in vivo DAL mice model showed significant increase in life span, induction of apoptosis was evidenced by acridine orange and ethidium bromide (AO and EB) staining.  相似文献   

17.
Photodynamic therapy (PDT) is a clinically approved treatment for the ocular condition age-related macular degeneration, and certain types of cancer. PDT is also under investigation for other ocular, as well as, immune-mediated and cardiovascular indications. PDT is a two step procedure. In the first step, the photosensitizer, usually a porphyrin derivative, is administered and taken up by cells. The second step involves activation of the photosensitizer with a specific wavelength of visible light. Exposure to light of an activating wavelength generates reactive oxygen species within cells containing photosensitizer. PDT with porphyrin photosensitizers induces rapid apoptotic cell death, an event which may be attributed to the close association of these compounds with mitochondria. Thus, PDT is an attractive method to treat ailments such as cancer, viral infections, autoimmune disorders and certain cardiovascular diseases in which the apoptotic program may be compromised. The present review examines the cellular events triggered at lethal and sublethal PDT doses and their relationship to the subsequent effects exerted upon cells.  相似文献   

18.
The photoeffect of new proflavine derivatives with DNA-binding and antitumour activities, 3,6-bis((1-alkyl-5-oxo-imidazolidin-2-yliden)imino)acridine hydrochlorides (AcrDIMs), was studied to evaluate them as potential photosensitizers for photodynamic antitumor therapy. EPR measurements showed that superoxide radical anion and singlet oxygen were produced upon irradiation of AcrDIMs with UV-A light (>300 nm) in the presence of molecular oxygen. This indicates that AcrDIMs may act as photosensitizers. The most active pentyl-AcrDIM and hexyl-AcrDIM displayed photocytotoxic effect toward the mouse lymphocytic leukemia cell line L1210 and human ovarian cancer cells A2780. Antitumor activity of pentyl-AcrDIM increased as high as about 12 times (72 h incubation) after irradiation of A2780 cells (365 nm, 1.05 J/cm2). The photocytotoxicity seems to be associated with oxidative stress. Concerning the cell cycle, flow cytometry showed an arrest in the S-phase already 4 h after irradiation. In a comet assay, no genotoxicity of AcrDIMs was found. Typical morphologic changes and formation of DNA-ladders indicated induction of apoptotic cell death, though no activation of caspase-3 was observed. Investigation of intracellular localization of pentyl-AcrDIM confirmed its partial accumulation in mitochondria and lysosomes. After irradiation of the A2780 cells, colocalization of pentyl-AcrDIM with monodansylcadaverine, a lysosomal dye, was proven, suggesting that lysosomes in the irradiated cells may be involved in the cell death.  相似文献   

19.
《Cytokine》2013,63(3):360-368
BackgroundInterleukin (IL)-19, a member of the IL-10 cytokine family, is involved in keratinocyte proliferation in psoriasis.ObjectivesWe investigated the role of IL-19 in the wound-healing process in vivo and in vitro.MethodsTwo full-thickness circular wounds (4 mm in diameter) were punched into the skin of BALB/C mice. IL-19 and keratinocyte growth factor (KGF) mRNA in wounded skin were determined using real-time PCR. The wounds were treated with PBS, vehicle, IL-19 (400 ng/mL), or IL-20 (400 ng/mL) (n = 6 in each group) twice daily and the percentage of wound healing was measured daily for 7 days. In vitro, human skin fibroblast CCD966-SK cells and keratinocyte HaCaT cells were treated with IL-19 or KGF. Cell proliferation and migration were determined using bromodeoxyuridine (BrdU) and transwell assays, respectively. The expression of IL-19 and KGF mRNA was also analyzed.ResultsIn wounded mouse skin, IL-19 mRNA was upregulated at 12 h, and KGF at 24 h after the injury. Both increases in gene expression declined 72 h after the skin had been wounded. The percentage of wound healing in IL-19-treated mice was higher than in control mice. In vitro, IL-19 upregulated KGF expression in the CCD966-SK cells; IL-19 was upregulated in KGF-treated HaCaT cells. KGF but not IL-19 promoted HaCaT cell proliferation. However, IL-19 significantly increased the migration of HaCaT cells. HaCaT cells treated with the cultured supernatants of IL-19-stimulated CCD966-SK cells showed significantly more proliferation than in controls.ConclusionsIL-19 is important for cutaneous wound healing because it upregulates KGF expression.  相似文献   

20.
Light activation of photosensitizing dyes in presence of molecular oxygen generates highly cytotoxic reactive oxygen species leading to cell inactivation. Nucleic acids are molecular targets of this photodynamic action but not considered the main cause of cell death. The in vivo effect of the photodynamic process on the intracellular nucleic acid content of Escherichia coli and Staphylococcus warneri was evaluated herein.Two cationic porphyrins (Tetra-Py+-Me and Tri-Py+-Me-PF) were used to photoinactivate E. coli (5.0 μM; 108 cells mL?1) and S. warneri (0.5 μM; 108 cells mL?1) upon white light irradiation at 4.0 mW cm?2 for 270 min and 40 min, respectively. Total nucleic acids were extracted from photosensitized bacteria after different times of irradiation and analyzed by agarose gel electrophoresis. The double-stranded DNA was quantified by fluorimetry and the porphyrin binding to bacteria was determined by spectrofluorimetry.E. coli was completely photoinactivated with both porphyrins (5.0 μM), whereas S. warneri was only completely inactivated by Tri-Py+-Me-PF (0.5 μM). The hierarchy of nucleic acid changes in E. coli was in the order: 23S rRNA > 16S rRNA > genomic DNA. The nucleic acids of S. warneri were extensively reduced after 5 min with Tri-Py+-Me-PF but almost unchanged with Tetra-Py+-Me after 40 min of irradiation. The amount of Tri-Py+-Me-PF bound to E. coli after washing the cells is higher than Tetra-Py+-Me and the opposite was observed for S. warneri. The binding capacity of the photosensitizers is not directly related to the PDI efficiency or nucleic acid reduction and this reduction occurs in parallel with the decrease of surviving cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号