首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 401 毫秒
1.
Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell–cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis‐ and trans‐synaptic protein complexes. Here, we present a 2.7 Å cryo‐EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C‐rich, YD‐shell, and ABD domains. A 1.5 Å crystal structure of the C‐rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS‐based rigid‐body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium‐dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis‐dimer is compatible with homomeric trans‐interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis‐ and trans‐synaptic interactions to construct functional neuronal circuits.  相似文献   

2.
Inverted repeats are important genetic elements for genome instability. In the current study we have investigated the role of inverted repeats in a DNA rearrangement reaction using a linear DNA substrate. We show that linear DNA substrates with terminal inverted repeats can efficiently transform Escherichia coli. The transformation products contain circular inverted dimers in which the DNA sequences between terminal inverted repeats are duplicated. In contrast to the recombination/rearrangement product of circular DNA substrates, which is exclusively one particular form of the inverted dimer, the rearrangement products of the linear DNA substrate consist of two isomeric forms of the inverted dimer. Escherichia coli mutants defective in RecBCD exhibit much reduced transformation efficiency, suggesting a role for RecBCD in the protection rather than destruction of these linear DNA substrates. These results suggest a model in which inverted repeats near the ends of a double-strand break can be processed by a helicase/exonuclease to form hairpin caps. Processing of hairpin capped DNA intermediates can then yield inverted duplications. Linear DNA substrates containing terminal inverted repeats can also be converted into inverted dimers in COS cells, suggesting conservation of this type of genome instability from bacteria to mammalian cells.  相似文献   

3.
Cadherins, Ca2+-dependent adhesion molecules, are crucial for cell-cell junctions and remodeling. Cadherins form inter-junctional lattices by the formation of both cis and trans dimers. Here, we directly visualize and quantify the spatiotemporal dynamics of wild-type and dimer mutant N-cadherin interactions using time-lapse imaging of junction assembly, disassembly and a FRET reporter to assess Ca2+-dependent interactions. A trans dimer mutant (W2A) and a cis mutant (V81D/V174D) exhibited an increased Ca2+-sensitivity for the disassembly of trans dimers compared to the WT, while another mutant (R14E) was insensitive to Ca2+-chelation. Time-lapse imaging of junction assembly and disassembly, monitored in 2D and 3D (using cellular spheroids), revealed kinetic differences in the different mutants as well as different behaviors in the 2D and 3D environment. Taken together, these data provide new insights into the role that the cis and trans dimers play in the dynamic interactions of cadherins.  相似文献   

4.
Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5-monophosphate. Here we report the self-condensation of nucleoside 5-phosphate 2-methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2+ in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MeImpU and 2-MeImpC produce about 65% of oligomers including 4% of the 3,5-linked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of internucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MeImpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.  相似文献   

5.
The naphthoquinone dimers natalenone, 8′-hydroxydiospyrin and euclanone and the trimers galpinone and a compound with MW 562 were isolated from E. natalensis roots. Natalenone is a dehydrodimer of 7-methyl- juglone with the two moieties linked by two CC bonds to give a fused tetracyclic structure, one ring bearing a methylene bridge. Galpinone is a 7-methyljuglone linear trimer, the three units probably being linked C-8-C-6′and C-3′-C-3″. Euclanone is a new dimer of 7-methyljuglone and methylnaphthazarin, isomeric with 8′-hydroxydiospyrin.  相似文献   

6.
The ultraviolet (UV)-induced formation of cyclobutyl pyrimidine dimers in Escherichia coli deoxyribonucleic acid (DNA) in vitro has been investigated in terms of the mechanism of inhibition by acridine dyes, the effect on dimer yield of specific singlet and triplet quenchers, and the mechanism of dimer formation. Our results indicate that (a) energy transfer is important in dimer reduction by acridines, (b) this transfer occurs from the singlet (S1) of DNA, and (c) at room temperature triplet quenchers do not reduce dimer yield in DNA.  相似文献   

7.
When cyclobutane pyrimidine dimers stall DNA replication by DNA polymerase (Pol) δ or ε, a switch occurs to allow translesion synthesis by DNA polymerase η, followed by another switch that allows normal replication to resume. In the present study, we investigate these switches using Saccharomyces cerevisiae Pol δ, Pol ε and Pol η and a series of matched and mismatched primer templates that mimic each incorporation needed to completely bypass a cissyn thymine–thymine (TT) dimer. We report a complementary pattern of substrate use indicating that enzymatic switching involving localized translesion synthesis by Pol η and mismatch excision and polymerization by a major replicative polymerase can account for the efficient and accurate dimer bypass known to suppress sunlight-induced mutagenesis and skin cancer.  相似文献   

8.
Half-minilamins, representing amino- and carboxy-terminal fragments of human lamins A, B1 and B2 with a truncated central rod domain, were investigated for their ability to form distinct head-to-tail-type dimer complexes. This mode of interaction represents an essential step in the longitudinal assembly reaction exhibited by full-length lamin dimers. As determined by analytical ultracentrifugation, the amino-terminal fragments were soluble under low ionic strength conditions sedimenting with distinct profiles and s-values (1.6-1.8 S) indicating the formation of coiled-coil dimers. The smaller carboxy-terminal fragments were, except for lamin B2, largely insoluble under these conditions. However, after equimolar amounts of homotypic amino- and carboxy-terminal lamin fragments had been mixed in 4 M urea, upon subsequent renaturation the carboxy-terminal fragments were completely rescued from precipitation and distinct soluble complexes with higher s-values (2.3-2.7 S) were obtained. From this behavior, we conclude that the amino- and carboxy-terminal coiled-coil dimers interact to form distinct oligomers (i.e. tetramers). Furthermore, a corresponding interaction occurred also between heterotypic pairs of A- and B-type lamin fragments. Hence, A-type lamin dimers may interact with B-type lamin dimers head-to-tail to yield linear polymers. These findings indicate that a lamin dimer principally has the freedom for a “combinatorial” head-to-tail association with all types of lamins, a property that might be of significant importance for the assembly of the nuclear lamina. Furthermore, we suggest that the head-to-tail interaction of the rod end domains represents a principal step in the assembly of cytoplasmic intermediate filament proteins too.  相似文献   

9.
It was recently shown that thymine dimers in the all-thymine oligonucleotide (dT)18 are fully formed in <1 ps after ultraviolet excitation. The speed and low quantum yield of this reaction suggest that only a small fraction of the conformers of this structurally disordered oligonucleotide are in a position to react at the instant of photon absorption. In this work, we explore the hypothesis that conventional molecular dynamics simulations can be used to predict the yield of cyclobutane pyrimidine dimers in DNA. Conformations obtained from simulations of thymidylyl-(3′-5′)-thymidine in various cosolvents were classified as dimerizable or nondimerizable depending on the distance between the C5-C6 double bonds of the adjacent thymine bases and the torsion angle between them. The quantum yield of cyclobutane pyrimidine dimer formation was calculated as the number of dimerizable conformations divided by the total number of conformations. The experimental quantum yields measured in the different solvents were satisfactorily reproduced using physically reasonable values for the two parameters. The mean dimerizable structure computed by averaging all of the dimerizable cis-syn conformations is structurally similar to the actual cis-syn dimer. Compared to the canonical B-form TT step, the most important structural property of a dimerizable conformation is its reduced helical twist angle of 22°.  相似文献   

10.
Immobilization is a key step involved in probing molecular interactions using single-molecule force spectroscopy methods, including atomic force microscopy (AFM). To our knowledge, we describe a novel approach termed flexible nanoarray (FNA) in which the interaction between the two internally immobilized amyloid β peptides is measured by pulling of the tether. The FNA tether was synthesized with nonnucleotide phosphoramidite monomers using the DNA synthesis chemistry. The two anchoring points for immobilization of the peptides inside the tether were incorporated at defined distances between them and from the ends of the polymer. Decamers of amyloid β peptide capable of dimer formation were selected as a test system. The formation of the peptide dimers was verified by AFM force spectroscopy by pulling the tether at the ends. In these experiments, the thiolated end of the FNA tether was covalently immobilized on the AFM substrate functionalized with maleimide. The other end of the FNA tether was functionalized with biotin to form a noncovalent link with the streptavidin functionalized AFM tip during the approach stage. The dimers’ rupture fingerprint was unambiguously identified on the force curves by its position and the force value. The FNA design allowed reversible experiments in which the monomers were allowed to associate after the rupture of the dimers by performing the approach stage before the rupture of the biotin-streptavidin link. This suggests that the FNA technique is capable of analyzing multiple intermolecular interactions in the same molecular complex. The computational analysis showed that the tethered peptides assemble into the same dimer structure as that formed by nontethered peptides, suggesting that the FNA tether has the necessary flexibility to enable assembly of the dimer even during the course of the force spectroscopy experiment.  相似文献   

11.
12.
Mixed-ligand complexes of the type Pt(amine)(pm)I2, (pm = pyrimidine) were synthesized and characterized by IR spectroscopy and by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The cis compounds were prepared from the reaction of I(amine)Pt(μ-I)2Pt(amine)I with pyrimidine (1:2 proportion) in water, while the trans isomers were synthesized from the isomerization of the cis complexes in acetone. The cis isomers could not be isolated with several amines, especially the more bulky ones. In 1H NMR, the pyrimidine protons of the cis compounds were found at lower fields than those of the trans analogs and the J(195Pt-1H) coupling constants are slightly larger in the cis geometry. For n-butylamine, the reaction produced also I2(n-butylamine)Pt(μ-pm)Pt(n-butylamine)I2. No such dimer could be isolated with the other amines. The compounds Pt(amine)(pm)Cl2 were also prepared (amine = methylamine and t-butylamine) from the ionic complex K[Pt(amine)Cl3] using an excess of pyrimidine. The IR and NMR characterization showed that the methylamine compound was a cis-trans mixture, while only the trans isomer was isolated with t-butylamine. When the same reaction was performed using a Pt:pm ratio of 2:1, Cl2(amine)Pt(μ-pm)Pt(amine)Cl2 was isolated. The pyrimidine-bridged dimers were identified by IR and multinuclear magnetic resonance spectroscopies as the trans-trans isomers. The trans monomers and dimers showed only one ν(Pt-Cl) band. The 195Pt NMR signals of the dimers were found close to those of the monomer trans-Pt(amine)(pm)Cl2.  相似文献   

13.
L-[14C]Phenylalanine, fed to cell suspension cultures of Douglas fir, (Pseudotsuga menziesii Franco) was incorporated simultaneously, but at different rates, into (+)-catechin, (−)-epicatechin, and procyanidins of increasing molecular weight. Asymmetric labeling of dimers and polymers was demonstrated, with more label appearing in the upper than in the lower or terminal unit. In addition, the total pool of free monomers was 10 to 30 times more highly labeled than was this lower, terminal unit of dimers and higher oligomers. Since the dimer, epicatechin-catechin, contained more label than catechin-catechin, it is concluded that the carbocation with the 2,3-cis stereochemistry of (−)-epicatechin was formed more rapidly than was that of the 2,3-trans type of (+)-catechin.  相似文献   

14.
The investigation of the aerial parts of Montanoa atriplicifolia afforded, in addition to known compounds, two pairs of isomeric cis-6,12-germa  相似文献   

15.
《Mutation research》1987,179(2):143-149
Ultraviolet light (UV) induced mutations in the lacI gene of Escherichia coli are thought to be targeted by DNA photoproducts. A number of reports suggest that both cyclobutyl pyrimidine dimers and pyrimidine (6−4) pyrimidone photoproducts may be involved. To investigate the potential contribution of each of these DNA photoproducts to mutagenesis in the lacI gene, we held UV-irradiated cells at a temperature of 44°C for 75 min and then exposed them to photoreactivating light (PR). This protocol is expected to preferentially deaminate specifically those cytosines that are contained in cyclobutyl dimers and subsequently monomerize the dimers to yield uracils in the DNA. In a strain deficient for uracil-DNA glycosylase (Ung), these uracils would not be removed and a G : C → A : T transition would result at the site of the dimer. This protocol resulted in the enhancement of amber nonsense mutations that result from transitions at potential cytosine-containing dimer sites. The enhanced mutation frequencies resulting from this procedure were used to estimate the probability of dimer formation at the individual sites. A comparison of the dimer distribution with the mutation frequencies following UV alone suggests that both cyclobutyl dimers and (6−4) photoproducts contribute to UV-mutagenesis in the lacI gene. In addition, we conclude that the frequency of mutation at any particular site not only reflects the occurrence of DNA damage, but also the action of metabolic processes that are responsible for DNA repair and mutagenesis.  相似文献   

16.
Thymine dimers were irradiated in aqueous solution with 60Co γ-rays in N2 or O2. Thymine and unidentified non-UV-absorbing products appeared. The thymine was identified by spectrophotometry, chromatography, and ability to support the growth of Escherichia coli 15 T-. Residual dimer was determined by a UV-reversibility assay. The G-values for dimer breakage were approximately equal in N2 and O2. At low γ-doses, about two thymines were produced per dimer broken in N2, whereas only about one thymine appeared per dimer broken in O2. For dimer irradiated in frozen solution, the yield of thymine was at least 100 times less than in liquid.  相似文献   

17.
Rapid mobilization of neutrophils from vasculature to the site of bacterial/viral infections and tissue injury is a critical step in successful resolution of inflammation. The chemokine CXCL8 plays a central role in recruiting neutrophils. A characteristic feature of CXCL8 is its ability to reversibly exist as both monomers and dimers, but whether both forms exist in vivo, and if so, the relevance of each form for in vivo function is not known. In this study, using a ‘trapped’ non-associating monomer and a non-dissociating dimer, we show that (i) wild type (WT) CXCL8 exists as both monomers and dimers, (ii) the in vivo recruitment profiles of the monomer, dimer, and WT are distinctly different, and (iii) the dimer is essential for initial robust recruitment and the WT is most active for sustained recruitment. Using a microfluidic device, we also observe that recruitment is not only dependent on the total amount of CXCL8 but also on the steepness of the gradient, and the gradients created by different CXCL8 variants elicit different neutrophil migratory responses. CXCL8 mediates its function by binding to CXCR2 receptor on neutrophils and glycosaminoglycans (GAGs) on endothelial cells. On the basis of our data, we propose that dynamic equilibrium between CXCL8 monomers and dimers and their differential binding to CXCR2 and GAGs mediates and regulates in vivo neutrophil recruitment. Our finding that both CXCL8 monomer and dimer are functional in vivo is novel, and indicates that the CXCL8 monomer-dimer equilibrium and neutrophil recruitment are intimately linked in health and disease.  相似文献   

18.
In this communication we report on our studies into the previously undetected dimerization chemistry of thiazolium salts. Thiazolium salts with electron-withdrawing substituents, such as 3,4-dimethyl-5-ethoxycarbonylthiazolium iodide, yield acid- and oxygen-sensitive ethylenic dimers under conditions originally used to detect the dimerization of 3-methylbenzothiazolium iodide. The 5-ethoxycarbonyl-4-methyl-3-phenylmethylthiazolium and 5-(2-O-triphenylmethyl-hydroxyethyl)-4-methyl-3-phenylmethylthiazolium bromides yield stable rearranged dimers, rather than the labile ethylenic dimers, under identical conditions. 4-Methyl-5-(2-hydroxyethyl)-3-phenylmethylthiazolium bromide and thiamine hydrochloride yield rearranged dimers which were isolated as their N,O-ketal derivatives when these salts were heated in aprotic solution in the presence of DBN and K2CO3, respectively. Rearrangement of the ethylenic dimer of 3-phenylmethylbenzothiazolium bromide to 2-(benzothiazol-2-yl)-2,3-diphenylmethylbenzothiazoline (J. Baldwin, S. E. Branz, and J. A. Walker (1977) J. Org. Chem. 42, 4142) demonstrates that rearranged dimers of these thiazolium salts are produced via a mechanism involving 1,3-sigmatropic rearrangement of intermediate ethylenic dimers. Based on literature precedent we argue that this dimerization chemistry demonstrates the nucleophilic carbene nature of C-2 deprotonated thiazolium salts in aprotic basic solution.  相似文献   

19.
The cyclobutane ring (CB) puckering of a cissyn DNA photodimer (cissyn d-T[p]T) differs from that of a cissyn RNA photodimer (cissyn r-U [p] U) [J.-K. Kim and J. L. Alderfer (1992) Journal of Biomolecular Structure and Dynamics, Vol. 9 , p. 1705]. In cissyn d-T [p] T, interconversion of the CB ring between CB+ and CB? is observed, while in cissyn r-U [p] U only CB? is observed. In the CB+ conformation, the two thymine rings of the dimer are twisted in a right-handed fashion, as are the bases in B-form DNA. In case of CB? they are twisted in a left-handed fashion. The C5 (base) and/or C2′ (sugar) substituents apparently affect the CB ring flexibility in cissyn d-T [p] T and cissyn r-U [p] U. To study the effects of the C5 substituent on CB ring flexibility, two-dimensional nuclear Overhauser effect (NOE) and 31P-nmr experiments were performed on cissyn d-T [p] U, cissyn d-U [p] T, and cissyn d-U [p] U photodimers to investigate the CB puckering mode and overall molecular conformation and dynamics. The NOE results indicate the 5-methyl group in the photodimer induces conformational flexibility of the CB ring. In cissyn d-T [p] U and cissyn d-U [p] T, both CB+ and CB? puckering modes are observed. This indicates interconversion between two modes takes place as observed in cissyn d-T [p] T. In the case of cissyn d-U [p] U, only the puckering CB? mode is observed. All three DNA-type dimers—cissyn d-T [p] U, cissyn d-U [p] T, cissyn d-U [p] U—show a characteristic flexibility of glycosidic bonds at the 5′ residue; cissyn d-T [p] T demonstrates synanti interconversion for both the 3′ and 5′ sides, while the others are exclusively anti on the 3′ side. In contrast, the ribophotodimer, cissyn r-U [p] U, lacking the C5 methyls and having a C2′-OH, demonstrates no conformational flexibility in the CB ring or in either of the glycosidic bonds. Differential flexibility of the three DNA-type dimers (cissyn d-T [p] U, cissyn d-U [p] T, cissyn d-U [p] U) and the RNA dimer (cissyn r-U [p] U) in the sugar-phosphate backbone region is also apparent from the temperature dependence of the 31P chemical shifts of these photodimers compared to their normal dimer analogues. Over the temperature range 18-63°C, the chemical shift change is reduced 22–42% in three DNA-type dimers, while it is reduced 71% in cissyn r-U [p] U, suggesting the RNA-type dimer is more rigid. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The cissyn dimer is the major DNA photoproduct produced by UV irradiation. In order to determine the origin of the mutagenic property of the cissyn dimer, we used NMR restraints and molecular dynamics to determine the solution structure of a DNA decamer duplex containing a wobble pair between the 3′-T of the cissyn dimer and the opposite T residue (CS/TA duplex). The solution structure of the CS/TA duplex revealed that the 3′-T·T base pair of the cissyn dimer had base pair geometry that was significantly different from the canonical Watson–Crick base pair and caused destabilization and conformational distortion of its 3′-region. However, a 3′-T·A base pair at the cissyn dimer within this related DNA decamer maintains the normal Watson–Crick base pair geometry and causes little distortion in the conformation of its 3′-side. Our results show that in spite of its stable hydrogen bonding, the insertion of a T residue opposite the 3′-T of the cissyn dimer is inhibited by structural distortion caused by the 3′-T·T base pair. This may explain why the frequency of the 3′-T→A transversion, which is the major mutation produced by the cissyn dimer, is only 4%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号