首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this research work, proline ester prodrug of acetaminophen (Pro-APAP) was synthesized and evaluated for its stability in PBS buffer at various pH and Caco-2 cell homogenate. The Pro-APAP is more stable at lower pH than higher pH, with half-life of 120 min in PBS buffer at pH 2.0, half-life of 65 min at pH 5.0, and half life of 3.5 min at pH 7.4, respectively. The half-life of Pro-APAP in Caco-2 cell homogenate is about 1 min, much shorter than the half-life in PBS buffer at pH 7.4, indicating enzymes in the cell homogenate contribute to the hydrolysis of the ester bond. Carboxypeptidase A was incubated with Pro-APAP at pH 7.4 with half-life of 3.8 min which is very close to the half life in buffer itself. This clearly indicates carboxypeptidase A is not one of the enzymes contributing to the hydrolysis of the prodrug. Physicochemical characteristics such as melting point and stability of newly synthesized prodrug were determined by MDSC technique.  相似文献   

3.
4.
5.
Up-regulation of VEGF-C (vascular endothelial growth factor C), a most potent lymphangiogenic factor, is associated with inflammation and cancer metastasis. Identification of stimuli contributing to these processes is a challenging task. I demonstrate in this paper that chitin hydrolysate served as a strong inducer of VEGF-C synthesis by human breast cancer MDA-MB-231 cells, increasing the secretion of VEGF-C to the cell culture medium as much as by 10-fold in comparison with the basal production. A moderate increase of VEGF-C secretion was also observed in the presence of hypertonic doses of NaCl, which mimicked the matrix of chitin hydrolysate stock solution, and in the presence of chitin-binding lectin, WGA (wheat germ agglutinin). WGA, but not chitin hydrolysate, significantly affected the morphology of cells, which become smaller and rounded as assessed by viewing the actin cytoskeleton. Moreover, chitin hydrolysate inhibited the lectin effect on the cytoskeleton and sustained the overproduction of VEGF-C indicating that WGA-independent receptors were responsible for chitin-mediated stimulation of VEGF-C synthesis. These results suggest a novel function of chitin-derived oligosaccharides as VEGF-C stimuli.  相似文献   

6.
The rat form of DT-diaphorase (NAD(P)H: quinone acceptor oxidoreductase; EC 1.6.99.2) is more effective than the human form in activating prodrugs such as CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide). Our site-directed mutagenesis study has revealed that residue 104 (Tyr in the rat enzyme and Gln in the human enzyme) is an important residue responsible for the catalytic differences between the rat and the human enzymes in the activation of CB 1954 (S. Chen et al., 1997, J. Biol. Chem. 272, 1437-1439). The human mutant Q104Y is capable of reducing CB 1954 at a rate identical to that of the wild-type rat DT-diaphorase. In the present study, we prepared both the wild-type human DT-diaphorase- and the mutant Q104Y-expressing MDA-MB-231 breast cancer cell lines using the cDNA transfection method. The MDA-MB-231 cell line is homozygous for a P187S mutation in the DT-diaphorase gene and has no detectable DT-diaphorase activity. Stable clones for the wild-type transfected cells had the DT-diaphorase activity ranged from 0.1 to 3.8 micromol of DCIP reduced/min/mg of protein and the clones for Q104Y transfected cells had the activity ranged from 0.06 to 1.58 micromol of DCIP reduced/min/mg of protein. Furthermore, in contrast to the cells transfected with only expression vector that were not sensitive to CB 1954 treatment, the wild-type and Q104Y-expressing cells were capable of the reductive activation of CB 1954, resulting in cell eradication. Our data showed that cell killing by CB 1954 followed a dose and incubation-time dependent manner. It was also found that the cell survival upon the treatment of CB 1954 was related to the expressed DT-diaphorase activity in these cells. In the presence of 75 microM CB 1954, a 50% cell killing was achieved in cells containing Q104Y and the wild-type DT-diaphorase with the activity at approximately 0.67 and 3.8 micromol of DCIP reduced/min/mg of protein, respectively. These results agree well with those of the in vitro enzyme assays that show that Q104Y is significantly more active than the wild-type DT-diaphorase in the activation of CB 1954. Finally, the in vivo activation of CB 1954 was demonstrated with a nude mouse model using Q104Y-transfected MDA-MB-231 cells. These studies reveal that DT-diaphorase can activate CB 1954, and human Q104Y mutant enzyme is more active than the wild-type enzyme in the intracellular reductive activation of CB 1954.  相似文献   

7.
In mammalian nonmuscle cells, the mechanisms controlling the localized formation of myosin-II filaments are not well defined. To investigate the mechanisms mediating filament assembly and disassembly during generalized motility and chemotaxis, we examined the EGF-dependent phosphorylation of the myosin-IIA heavy chain in human breast cancer cells. EGF stimulation of MDA-MB-231 cells resulted in transient increases in both the assembly and phosphorylation of the myosin-IIA heavy chains. In EGF-stimulated cells, the myosin-IIA heavy chain is phosphorylated on the casein kinase 2 site (S1943). Cells expressing green fluorescent protein-myosin-IIA heavy-chain S1943E and S1943D mutants displayed increased migration into a wound and enhanced EGF-stimulated lamellipod extension compared with cells expressing wild-type myosin-IIA. In contrast, cells expressing the S1943A mutant exhibited reduced migration and lamellipod extension. These observations support a direct role for myosin-IIA heavy-chain phosphorylation in mediating motility and chemotaxis.  相似文献   

8.
The major drawback with cancer therapy is the development of resistant cells within tumors due to their heterogeneous nature and due to inadequate drug delivery during chemotherapy. Therefore, the propagation of injury ("bystander effect" (BE)) from directly damaged cells to other cells may have great implications in cancer chemotherapy. The general advantage of the bystander cell killing phenomenon is the large therapeutic index that can be achieved. Experiments suggest that this phenomenon is detected in radiation therapy as well as in gene therapy in conjunction with chemotherapy. In the present study, we developed an original in vitro model dedicated to the exploration of bystander cytotoxicity induced during breast carcinoma chemotherapy. In brief, we investigated this perpetuation of injury on untreated bystander MCF-7 breast cancer cells which were coplated with 5-fluorouracil (5-FU)-treated MDA-MB-231 breast cancer cells. To achieve this goal, a specific in vitro coculture model which involved mixing of aggressive MDA-MB-231 breast cancer cells with enhanced green fluorescent protein (EGFP) expressing stable clone of non-metastatic MCF-7 breast cancer cells (MCF-EGFP), was used. A bystander killing effect was observed in MCF-EGFP cells cocultured with MDA-MB-231 cells pretreated with 5-FU. The striking decrease in MCF-EGFP cells, as detected by assaying for total GFP intensity, is mediated by activation of Fas/FasL system. The implication of Fas in MCF-EGFP cell death was confirmed by using antagonistic anti-FasL antibody that reverses bystander cell death by blocking FasL on MDA-MB-231 cells. In addition, inhibition of CD95/Fas receptor on the cell surface of MCF-EGFP cells by treatment with Pifithrin-alpha, a p53 specific transactivation inhibitor, partially abrogated the sensitivity of bystander MCF-EGFP cells. Our data, therefore, demonstrates that the Fas/FasL system could be considered as a new determinant for chemotherapy-induced bystander cell death in breast cancers.  相似文献   

9.
Unlike other normal cells, a subpopulation of cells often termed as “stem cells” are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.  相似文献   

10.
6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells   总被引:1,自引:0,他引:1  
Gingerol (Zingiber officinale Roscoe, Zingiberaceae) is one of the most frequently and heavily consumed dietary condiments throughout the world. The oleoresin from rhizomes of ginger contains [6]-gingerol (1-[4′-hydroxy-3′-methoxyphenyl]-5-hydroxy-3-decanone) and its homologs which are pungent ingredients that have been found to possess many interesting pharmacological and physiological activities, such as anti-inflammatory, antihepatotoxic and cardiotonic effects. However, the effects of [6]-gingerol on metastatic processes in breast cancer cells are not currently well known. Therefore, in this study, we examined the effects of [6]-gingerol on adhesion, invasion, motility, activity and the amount of MMP-2 or -9 in the MDA-MB-231 human breast cancer cell line. We cultured MDA-MB-231 cells in the presence of various concentrations of [6]-gingerol (0, 2.5, 5 and 10 μM). [6]-Gingerol had no effect on cell adhesion up to 5 μM, but resulted in a 16% reduction at 10 μM. Treatment of MDA-MB-231 cells with increasing concentrations of [6]-gingerol led to a concentration-dependent decrease in cell migration and motility. The activities of MMP-2 or MMP-9 in MDA-MB-231 cells were decreased by treatment with [6]-gingerol and occurred in a dose-dependent manner. The amount of MMP-2 protein was decreased in a dose-dependent manner, although there was no change in the MMP-9 protein levels following treatment with [6]-gingerol. MMP-2 and MMP-9 mRNA expression were decreased by [6]-gingerol treatment. In conclusion, we have shown that [6]-gingerol inhibits cell adhesion, invasion, motility and activities of MMP-2 and MMP-9 in MDA-MB-231 human breast cancer cell lines.  相似文献   

11.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

12.
Cancer cells secrete abundant exosomes, and the secretion can be promoted by an increase of intracellular Ca2+. Stromal interaction molecule 1 (STIM1) plays a key role in shaping Ca2+ signals. MicroRNAs (miRNAs) have been reported to be potential therapeutic targets for many diseases, including breast cancer. Recently, we investigated the effect of exosomes from STIM1-knockout breast cancer MDA-MB-231 cells (Exo-STIM1-KO), and from SKF96365-treated MDA-MB-231 cells (Exo-SKF) on angiogenesis in human umbilical vein endothelial cells (HUVECs) and nude mice. The exosomes Exo-STIM1-KO and Exo-SKF inhibited tube formation by HUVECs remarkably. The miR-145 was increased in SKF96365 treated or STIM1-knockout MDA-MB-231 cells, Exo-SKF and Exo-STIM1-KO, and HUVECs treated with Exo-SKF or Exo-STIM1-KO. Moreover, the expressions of insulin receptor substrate 1 (IRS1), which is the target of miR-145, and the downstream proteins such as Akt/mammalian target of rapamycin (mTOR), Raf/extracellular signal regulated-protein kinase (ERK), and p38 were markedly inhibited in HUVECs treated with Exo-SKF or Exo-STIM1-KO. Matrigel plug assay in vivo showed that tumor angiogenesis was suppressed in Exo-STIM1-KO, but promoted when miR-145 antagomir was added. Taken together, our findings suggest that STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells.Subject terms: Tumour angiogenesis, Cancer microenvironment  相似文献   

13.
Gambogic acid (GA) has been known to have antitumor activity in vitro and in vivo. In the present study, we investigated the anti-invasive effects of GA in MDA-MB-231 human breast carcinoma cells. The results indicated that GA significantly inhibited the adhesion, migration, and invasion of the cells in vitro tested by the heterotypic adhesion assay, wound migration assay, and chamber invasion assay. Results of Western blotting and immunocytochemistry analysis showed that GA could suppress the expressions of matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) in MDA-MB-231 cells. Furthermore, gelatin zymography revealed that GA decreased the activities of MMP-2 and MMP-9. Additionally, GA exerted an inhibitory effect on the phosphorylation of ERK1/2 and JNK, while it had no effect on p38. Taken together, our results demonstrated the anti-invasive property of GA for the first time and indicated it could serve as a promising drug for the treatment of cancer metastasis.  相似文献   

14.
Carbonic anhydrase IX (CAIX) is a membrane-bound, tumor-related enzyme whose expression is often considered a marker for hypoxia, an indicator of poor prognosis in the majority of cancer patients, and is associated with acidification of the tumor microenvironment. Here, we describe for the first time the catalytic properties of native CAIX in MDA-MB-231 breast cancer cells that exhibit hypoxia-inducible CAIX expression. Using (18)O exchange measured by membrane inlet mass spectrometry, we determined catalytic activity in membrane ghosts and intact cells. Exofacial carbonic anhydrase activity increases with exposure to hypoxia, an activity which is suppressed by impermeant sulfonamide CA inhibitors. Inhibition by sulfonamide inhibitors is not sensitive to reoxygenation. CAIX activity in intact cells increases in response to reduced pH. Data from membrane ghosts show that the increase in activity at reduced pH is largely due to an increase in the dehydration reaction. In addition, the kinetic constants of CAIX in membrane ghosts are very similar to our previous measurements for purified, recombinant, truncated forms. Hence, the activity of CAIX is not affected by the proteoglycan extension or membrane environment. These activities were measured at a total concentration for all CO(2) species at 25 mm and close to chemical equilibrium, conditions which approximate the physiological extracellular environment. Our data suggest that CAIX is particularly well suited to maintain the extracellular pH at a value that favors the survival fitness of tumor cells.  相似文献   

15.
16.
The thioredoxin system is a key cellular antioxidant system and is highly expressed in cancer cells, especially in more aggressive and therapeutic resistant tumors. We analysed the expression of the thioredoxin system in the MDA-MB-231 breast cancer cell line under conditions mimicking the tumor oxygen microenvironment. We grew breast cancer cells in either prolonged hypoxia or hypoxia followed by various lengths of reoxygenation and in each case cells were cultured with or without a hypoxic cycling preconditioning (PC) phase preceding the hypoxic growth. Flow cytometry-based assays were used to measure reactive oxygen species (ROS) levels. Cells grown in hypoxia showed a significant decrease in ROS levels compared to normoxic cells, while a significant increase in ROS levels over normoxic cells was observed after 4 h of reoxygenation. The PC pre-treatment did not have a significant effect on ROS levels. Thioredoxin levels were also highest after 4 h of reoxygenation, however cells subjected to PC pre-treatment displayed even higher thioredoxin levels. The high level of intracellular thioredoxin was also reflected on the cell surface. Reporter assays showed that activity of the thioredoxin and thioredoxin reductase gene promoters was also highest in the reoxygenation phase, although PC pre-treatment did not result in a significant increase over non-PC treated cells. The use of a dominant negative Nrf-2 negated the increased thioredoxin promoter activity during reoxygenation. This data suggests that the high levels of thioredoxin observed in tumors may arise due to cycling between hypoxia and reoxygenation.  相似文献   

17.
ADP-ribosylation factors (ARFs) are monomeric G proteins that regulate many cellular processes such as reorganization of the actin cytoskeleton. We have previously shown that ARF1 is overexpressed in highly invasive breast cancer cells and contribute to their enhanced migration. In this study, we propose to define the molecular mechanism by which ARF1 regulates this complex cellular response by investigating the role of this ARF GTPase on the activation process of Rac1, a Rho GTPase, associated with lamellipodia formation during cell migration. Here, we first show that inhibition of ARF1 or Rac1 expression markedly impacts the ability of MDA-MB-231 cells to migrate upon EGF stimulation. However, the effect of ARF1 depletion can be reversed by overexpression of the Rac1 active mutant, Rac1 Q61L. Depletion of ARF1 also impairs the ability of EGF stimulation to promote GTP-loading of Rac1. To further investigate the possible cross-talk between ARF1 and Rac1, we next examined whether they could form a complex. We observed that the two GTPases could directly interact independently of the nature of the nucleotide bound to them. EGF treatment however resulted in the association of Rac1 with its effector IRSp53, which was completely abrogated in ARF1 depleted cells. We present evidences that this ARF isoform is responsible for the plasma membrane targeting of both Rac1 and IRSp53, a step essential for lamellipodia formation. In conclusion, this study provides a new mechanism by which ARF1 regulates cell migration and identifies this GTPase as a promising pharmacological target to reduce metastasis formation in breast cancer patients.  相似文献   

18.
《Phytomedicine》2014,21(6):871-876
Diosgenin, a naturally occurring steroidal saponin, possess tumor therapeutic potential. However, the effect of diosgenin on cancer metastasis remains poorly understood. In this study, we performed in vitro experiments to investigate the inhibitory activity of diosgenin on human breast cancer MDA-MB-231 cell migration, and reveal the possible mechanism. Diosgenin caused a marked inhibition of cell migration in MDA-MB-231 cell by transwell assay. In addition, diosgenin significantly impacted MDA-MB-231 cell migratory behavior under real-time observation. We also found diosgenin significantly inhibited actin polymerization, Vav2 phosphorylation and Cdc42 activation, which might be, at least in part, attributed to the anti-metastatic potential of diosgenin. These findings reveal a new therapeutic potential of diosgenin for human breast cancer metastasis therapy.  相似文献   

19.
Metastasis is the major cause of breast cancer mortality. The strength of cell adhesion to extracellular matrix is critical to cancer cell migration. Integrins, the primary mediators of cell to extra-cellular matrix adhesion, contain distinct divalent cation-binding sites. Binding of manganese and magnesium is vital to integrin-mediated cancer cell adhesion and migration. We hypothesized that zinc, a divalent cation, can modulate breast cancer metastasis through interfering with these divalent cation-dependent integrin-mediated cancer cell adhesion and migration. MDA-MB-231 cells were cultured in a zinc-depleted medium supplemented with 0 (control), 2.5, 5, 10, 25 and 50 μM of zinc to mimic severe zinc-deficiency, moderate zinc-deficiency, adequate zinc and three levels of zinc-supplementation: low-, moderate- and high-levels of zinc-supplementation, respectively. Zinc treatments had no effect on cellular zinc concentration, cell number and cell viability. Zinc at 5–50 μM reduced migration distance of MDA-MB-231 cells on fibronectin by 43–86% and migration rate on fibronectin by 72–90%. Zinc induced a dose-dependent inhibition of cell adhesion to fibronectin (R2=?0.98). Zinc at 10–50 μM reduced magnesium-facilitated cell adhesion to fibronectin in a dose-dependent manner (R2=?0.90). However, zinc had no effect on manganese-facilitated cell adhesion to fibronectin. Zinc at 5–50 μM caused rounding of the normally elongated, irregular-shaped MDA-MB-231 cells and disappearance of F-actin. Anti-integrin α5- and β1-subunit blocking antibodies inhibited magnesium-facilitated cell adhesion to fibronectin by 95 and 99%, respectively. In summary, zinc inhibited MDA-MB-231 cell migration on fibronectin by interfering with magnesium-dependent integrin-, likely integrin α5/β1-, mediated adhesion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号