首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The multidrug-resistant protein MRP1 (involved in the cancer cell multidrug resistance phenotype) has been found to be modulated by racemic verapamil (through stimulation of glutathione transport), inducing apoptosis of human MRP1 cDNA-transfected baby hamster kidney 21 (BHK-21) cells and not of control BHK-21 cells. In this study, we show that the two enantiomers of verapamil have different effects on MRP1 activity. Only the S-isomer (not the R-isomer) potently induced the death of MRP1-transfected BHK-21 cells. The decrease in cellular glutathione content induced by the S-isomer, which was not observed with the R-isomer, was stronger than that induced by the racemic mixture, indicating that the R-isomer antagonized the S-isomer effect. Both enantiomers altered leukotriene C(4) and calcein transport by MRP1. Thus, the R-isomer behaved as an inhibitor, which was confirmed by its ability to revert the multidrug resistance phenotype toward vincristine. Molecular studies on purified MRP1 using fluorescence spectroscopy showed that both enantiomers bound to MRP1 with high affinity, with the binding being prevented by glutathione. Furthermore, conformational changes induced by the two enantiomers (monitored by sodium iodide accessibility of MRP1 tryptophan residues) were quite different, correlating with their distinct effects. (S)-Verapamil induces the death of potentially resistant tumor cells, whereas (R)-verapamil sensitizes MRP1-overexpressing cells to chemotherapeutics. These results might be of great potential interest in the design of new compounds able to modulate MRP1 in chemotherapy.  相似文献   

2.
The 190-kDa multidrug resistance protein MRP1 is an ATP-binding cassette protein that confers resistance to multiple antineoplastic agents and actively transports conjugated organic anions. We have previously shown that MRP1-mediated GSH transport is stimulated by verapamil but transport of verapamil in the presence or absence of GSH is not observed. We have now examined 20 sulfur-containing verapamil analogs for their ability to inhibit MRP1-mediated leukotriene C(4) (LTC(4)) transport and stimulate GSH uptake into inside-out membrane vesicles. All of the derivatives were poor inhibitors of LTC(4) uptake. However, the inhibitory potency of the more lipophilic dithiane compounds could be enhanced by coincubation with GSH whereas this was not the case for the more hydrophilic dithiane tetraoxides. The dithiane derivatives stimulated GSH transport whereas, with one exception, the dithiane tetraoxides did not. One pair of dithiane stereoisomers differed significantly in their ability to stimulate GSH transport although their ability to inhibit LTC(4) uptake in the presence of GSH was comparable. Our findings indicate that the GSH transport activity of MRP1 can be dissociated from its conjugated organic anion transport activity.  相似文献   

3.
4.
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of gamma-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to approximately 90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.  相似文献   

5.
Glutathione (GSH) depletion is an important hallmark of apoptosis. We previously demonstrated that GSH depletion, by its efflux, regulates apoptosis by modulation of executioner caspase activity. However, both the molecular identity of the GSH transporter(s) involved and the signaling cascades regulating GSH loss remain obscure. We sought to determine the role of multidrug resistance protein 1 (MRP1) in GSH depletion and its regulatory role on extrinsic and intrinsic pathways of apoptosis. In human lymphoma cells, GSH depletion was stimulated rather than inhibited by pharmacological blockage of MRP1 with MK571. GSH loss was dependent on initiator caspases 8 and 9 activity. Genetic knock-down (>60 %) of MRP1 by stable transfection with short hairpin small interfering RNA significantly reduced MRP1 protein levels, which correlated directly with the loss of MRP1-mediated anion transport. However, GSH depletion and apoptosis induced by both extrinsic and intrinsic pathways were not affected by MRP1 knock-down. Interestingly, stimulation of GSH loss by MK571 also enhanced the initiator phase of apoptosis by stimulating initiator caspase 8 and 9 activity and pro-apoptotic BCL-2 interacting domain cleavage. Our results clearly show that caspase-dependent GSH loss and apoptosis are not mediated by MRP1 proteins and that GSH depletion stimulates the initiation phase of apoptosis in lymphoid cells.  相似文献   

6.
Absence of α-crystallins (αA and αB) in retinal pigment epithelial (RPE) cells renders them susceptible to oxidant-induced cell death. We tested the hypothesis that the protective effect of α-crystallin is mediated by changes in cellular glutathione (GSH) and elucidated the mechanism of GSH efflux. In α-crystallin overexpressing cells resistant to cell death, cellular GSH was >2 fold higher than vector control cells and this increase was seen particularly in mitochondria. The high GSH levels associated with α-crystallin overexpression were due to increased GSH biosynthesis. On the other hand, cellular GSH was decreased by 50% in murine retina lacking αA or αB crystallin. Multiple multidrug resistance protein (MRP) family isoforms were expressed in RPE, among which MRP1 was the most abundant. MRP1 was localized to the plasma membrane and inhibition of MRP1 markedly decreased GSH efflux. MRP1-suppressed cells were resistant to cell death and contained elevated intracellular GSH and GSSG. Increased GSH in MRP1-supressed cells resulted from a higher conversion of GSSG to GSH by glutathione reductase. In contrast, GSH efflux was significantly higher in MRP1 overexpressing RPE cells which also contained lower levels of cellular GSH and GSSG. Oxidative stress further increased GSH efflux with a decrease in cellular GSH and rendered cells apoptosis-prone. In conclusion, our data reveal for the first time that 1) MRP1 mediates GSH and GSSG efflux in RPE cells; 2) MRP1 inhibition renders RPE cells resistant to oxidative stress-induced cell death while MRP1 overexpression makes them susceptible and 3) the antiapoptotic function of α-crystallin in oxidatively stressed cells is mediated in part by GSH and MRP1. Our findings suggest that MRP1 and α crystallin are potential therapeutic targets in pathological retinal degenerative disorders linked to oxidative stress.  相似文献   

7.
Incubation of the drug-sensitive H69, a small cell lung cancer cell line, with increased concentrations of adriamycin yielded multidrug resistant (MDR) H69AR cells that over-express multidrug resistance-associated protein (MRP1). MRP1 co-transports its substrate with glutathione (GSH), leading to lower intracellular GSH. In this report we tested whether depleting intracellular GSH in MRP1-expressing cells could hyper-sensitize them to anticancer drugs or not. We have found that the GSH contents in MRP1-expressing cells are significantly lower than their corresponding control cells. The treatment with MRP1 substrate verapamil or the GSH synthetase inhibitor buthionine sulfoxi-mine significantly reduced the intracellular GSH contents in MRP1-expressing cells. Interestingly, depleting intracellular GSH contents can hyper-sensitize the MRP1-cDNA transfected BHK cells to daunomycin, but not the adriamycin-selected H69AR cells. Further analyses indicated that anti-apoptotic factor Bcl2 might be a factor responsible for the fact that depleting intracellular GSH could not hyper-sensitize H69AR cells to daunomycin. We hypothesized that knocking down the expression of Bcl2 could hyper-sensitize H69AR cells to daunomycin. Interestingly, infection of H69AR cells with retroviral particles harboring Bcl2 interfering RNAi not only reduced the expression of Bcl2, but also many factors that contribute to MDR, such as Bcl-xl, MRP1 and ABCC3, etc., leading to the MDR H69AR cells more sensitive to daunomycin than the parental H69 cell. Thus, although the mechanisms of the down-regulation of the genes contributing to MDR remain to be elucidated, retroviral particles harboring Bcl2 interfering RNAi could be used as an alternative way to sensitize the MDR cancer cells to anticancer drugs.  相似文献   

8.
9.
We determinedthe role of the multidrug resistance (MDR1) gene product,P-glycoprotein (PGP), in the secretion of aldosterone by the adrenalcell line NCI-H295. Aldosterone secretion is significantly decreased bythe PGP inhibitors verapamil, cyclosporin A (CSA), PSC-833, andvinblastine. Aldosterone inhibits the efflux of the PGP substraterhodamine 123 from NCI-H295 cells and from human mesangial cells(expressing PGP). CSA, verapamil, and the monoclonal antibody UIC2significantly decreased the efflux of fluorescein-labeled (FL)-aldosterone microinjected into NCI-H295 cells. In MCF-7/VP cells,expressing multidrug resistance-associated protein (MRP) but not PGP,and in the parental cell line MCF7 (expressing no MRP andno PGP), the efflux of microinjected FL-aldosterone was slow. In BC19/3cells (MCF7 cells transfected with MDR1), the efflux of FL-aldosteronewas rapid and it was inhibited by verapamil, indicating thattransfection with MDR1 cDNA confers the ability to transportFL-aldosterone. These results strongly indicate that PGP plays a rolein the secretion of aldosterone by NCI-H295 cells and in other cellsexpressing MDR1, including normal adrenal cells.

  相似文献   

10.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH.  相似文献   

11.
The mechanism for cisplatin resistance in cisplatin-resistant KCP-4 cells was studied. Although multidrug resistance-associated protein (MRP) was not detected in KCP-4 cells, the cells were more resistant to heavy metals than multidrug-resistant C-A120 cells that overexpressed MRP. KCP-4 cells expressed metallothionein, but it was scarcely involved in cisplatin resistance in these cells. KCP-4 cells did not express canalicular multispecific organic anion transporter (cMOAT). The glutathione(GSH) level was 4.7-fold higher in KCP-4 cells than in KB-3-1 cells. When the GSH level in KCP-4 cells was decreased by treating the cells with buthionine sulfoximine and nitrofurantoin, the accumulation of and sensitivity to cispaltin in the cells were increased. C-A120 cells were only 3.0-fold more resistant to cisplatin than KB-3-1 cells and this resistance was not affected by the increased glutathione level. The accumulation of platinum in C-A120 and KCP-4 cells was 68.5 and 20.4% of that in KB-3-1 cells, respectively, while the intracellular levels of antimony potassium tartrate in C-A120 and KCP-4 cells were 13.2 and 9.9% of that in KB-3-1 cells, respectively. The ATP-dependent efflux of antimony was enhanced in both C-A120 and KCP-4 cells. These results, taken together, suggest an efflux pump for heavy metals different from MRP and cMOAT is involved in cisplatin resistance in KCP-4 cells.  相似文献   

12.

Background  

Multidrug resistance mediated by the multidrug resistance-associated protein 1 (MRP1) decreases cellular drug accumulation. The exact mechanism of MRP1 involved multidrug resistance has not been clarified yet, though glutathione (GSH) is likely to have a role for the resistance to occur. N-acetylcysteine (NAC) is a pro-glutathione drug. DL-Buthionine (S,R)-sulfoximine (BSO) is an inhibitor of GSH synthesis. The aim of our study was to investigate the effect of NAC and BSO on MRP1-mediated vincristine resistance in Human Embryonic Kidney (HEK293) and its MRP1 transfected 293MRP cells. Human Embryonic Kidney (HEK293) cells were transfected with a plasmid encoding whole MRP1 gene. Both cells were incubated with vincristine in the presence or absence of NAC and/or BSO. The viability of both cells was determined under different incubation conditions. GSH, Glutathione S-Transferase (GST) and glutathione peroxidase (GPx) levels were measured in the cell extracts obtained from both cells incubated with different drugs.  相似文献   

13.
The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases.  相似文献   

14.
Multidrug resistance protein 1 (MRP1) and P-glycoprotein, which are ATP-dependent multidrug efflux pumps and involved in multidrug resistance of tumor cells, are members of the ATP binding cassette proteins and contain two nucleotide-binding folds (NBFs). P-glycoprotein hydrolyzes ATP at both NBFs, and vanadate-induced nucleotide trapping occurs at both NBFs. We examined vanadate-induced nucleotide trapping in MRP1 stably expressed in KB cell membrane by using 8-azido-[alpha-(32)P]ATP. Vanadate-induced nucleotide trapping in MRP1 was found to be stimulated by reduced glutathione, glutathione disulfide, and etoposide and to be synergistically stimulated by the presence of etoposide and either glutathione. These results suggest that glutathione and etoposide interact with MRP1 at different sites and that those bindings cooperatively stimulate the nucleotide trapping. Mild trypsin digestion of MRP1 revealed that vanadate-induced nucleotide trapping mainly occurs at NBF2. Our results suggest that the two NBFs of MRP1 might be functionally nonequivalent.  相似文献   

15.
Multidrug resistance (MDR) transporters have been termed the Phase III detoxification system because they not only export endogenous metabolites but provide protection from xenobiotic insult by actively secreting foreign compounds and their metabolites from tissues. However, MDR overexpression in tumors can lead to drug resistance, a major obstacle in the treatment of many cancers, including lung cancer. Isothiocyanates from cruciferous vegetables, such as sulforaphane (SF) and erucin (ER), are known to enhance the expression of Phase II detoxification enzymes. Here we evaluated the ability of SF and ER to modulate MDR mRNA and protein expressions, as well as transporter activity. The expression of P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1) and multidrug resistance protein 2 (MRP2) in liver (HepG2), colon (Caco-2) and lung (A549) cancer cells treated with ER or SF was analyzed by Western blotting. Neither SF nor ER affected P-gp expression in any of the cell lines tested. Both SF and ER increased the protein levels of MRP1 and MRP2 in HepG2 cells and of MRP2 in Caco-2 cells in a dose-dependent manner. In A549 lung cancer cells, SF increased MRP1 and MRP2 mRNA and protein levels; ER caused a similar yet smaller increase in MRP1 and MRP2 mRNA. In addition, SF and ER increased MRP1-dependent efflux of 5-carboxyfluorescein diacetate in A549 cells, although again the effect of SF was substantially greater than that of ER. The implication of these findings is that dietary components that modulate detoxification systems should be studied carefully before being recommended for use during chemotherapy, as these compounds may have additional influences on the disposition of chemotherapeutic drugs.  相似文献   

16.
One of the important pathways of resistance to anthracyclines is governed by elevated levels of glutathione (GSH) in cancer cells. Resistant cells having elevated levels of GSH show higher expression of multidrug-resistant protein (MRP); the activity of glutathione S-transferases (GSTs) group of enzymes have also been found to be higher in some drug-resistant cells. The general mechanism in this type of resistance seems to be the formation of conjugates enzymatically by GSTs, and subsequent efflux by active transport through MRP (MRP1-MRP9). MRPs act as drug efflux pump and can also co-transport drugs like doxorubicin (Dox) with GSH. Depletion of GSH in resistant neoplastic cells may possibly sensitize such cells, and thus overcome multidrug resistance (MDR). A number of resistance modifying agents (RMA) like DL-buthionine (S, R) sulfoxamine (BSO) and ethacrynic acid (EA) moderately modulate resistance by acting as a GSH-depleting agent. As most of the GSH-depleting agents have dose-related toxicity, development of non-toxic GSH-depleting agent has immense importance in overcoming MDR. The present study describes the resistance reversal potentiality of novel copper complex, viz., copper N-(2-hydroxy acetophenone) glycinate (CuNG) developed by us in Dox-resistant Ehrlich ascites carcinoma (EAC/Dox) cells. CuNG depletes GSH in resistant (EAC/Dox) cells possibly by forming conjugate with it. Depletion of GSH results in higher Dox accumulation that may lead to enhanced rate of apoptosis in EAC/Dox cells. In vivo studies with male Swiss albino mice bearing ascitic growth of EAC/Dox showed tremendous increase in life span (treated/control, T/C = 453%) for the treated group with apparent regression of tumor. Resistance to Dox in EAC/Dox cells is associated with over expression of GST-P1, GST-M1 (enzymes involved in phase II detoxification) and MRP1 (a transmembrane ATPase efflux pump for monoglutathionyl conjugates of xenobiotics). CuNG causes down regulation of all these three proteins in EAC/Dox cells. The effect of CuNG as RMA is better than BSO in many aspects.  相似文献   

17.
18.
Many endogenous or xenobiotic lipophilic substances are eliminated from the cells by the sequence of oxidation, conjugation to an anionic group (glutathione, glucuronate or sulfate) and transport across the plasma membrane into the extracellular space. The latter step is mediated by integral membrane glycoproteins belonging to the superfamily of ATP-Binding Cassette (ABC) transporters. A subfamily, referred as ABCC, includes the famous/infamous cystic fibrosis transmembrane regulator (CFTR), the sulfonylurea receptors (SUR 1 and 2), and the multidrug resistance-associated proteins (MRPs). The name of the MRPs refers to their potential role in clinical multidrug resistance, a phenomenon that hinders the effective chemotherapy of tumors. The MRPs that have been functionally characterized so far share the property of ATP-dependent export pumps for conjugates with glutathione (GSH), glucuronate or sulfate. MRP1 and MRP2 are also mediating the cotransport of unconjugated amphiphilic compounds together with free GSH. MRP3 preferentially transports glucuronides but not glutathione S-conjugates or free GSH. MRP1 and MRP2 also contribute to the control of the intracellular glutathione disulfide (GSSG) level. Although these proteins are low affinity GSSG transporters, they can play essential role in response to oxidative stress when the activity of GSSG reductase becomes rate limiting. The human MRP4, MRP5 and MRP6 have only partially been characterized. However, it has been revealed that MRP4 can function as an efflux pump for cyclic nucleotides and nucleoside analogues, used as anti-HIV drugs. MRP5 also transports GSH conjugates, nucleoside analogues, and possibly heavy metal complexes. Transport of glutathione S-conjugates mediated by MRP6, the mutation of which causes pseudoxantoma elasticum, has recently been shown. In summary, numerous members of the multidrug resistance-associated protein family serve as export pumps that prevent the accumulation of anionic conjugates and GSSG in the cytoplasm, and play, therefore, an essential role in detoxification and defense against oxidative stress.  相似文献   

19.
The proteins responsible for reduced glutathione (GSH) export under both basal conditions and in cells undergoing apoptosis have not yet been identified, although recent studies implicate some members of the multidrug resistance-associated protein family (MRP/ABCC) in this process. To examine the role of MRP1 in GSH release, the present study measured basal and apoptotic GSH efflux in HEK293 cells stably transfected with human MRP1. MRP1-overexpressing cells had lower intracellular GSH levels and higher levels of GSH release, under both basal conditions and after apoptosis was induced with either Fas antibody or staurosporine. Despite the enhanced GSH efflux in MRP1-overexpressing cells, intracellular GSH levels were not further depleted when cells were treated with Fas antibody or staurosporine, suggesting an increase in GSH synthesis. MRP1-overexpressing cells were also less susceptible to apoptosis, suggesting that the stable intracellular GSH levels may have protected cells from death. Overall, these results demonstrate that basal and apoptotic GSH release are markedly enhanced in cells overexpressing MRP1, suggesting that MRP1 plays a key role in these processes. The enhanced GSH release, with a concurrent decrease of intracellular GSH, appears to be necessary for the progression of apoptosis.  相似文献   

20.
gamma-Glutamylcysteine synthetase (gamma-GCS) is a key enzyme in glutathione (GSH) synthesis, and is thought to play a significant role in intracellular detoxification, especially of anticancer drugs. Increased levels of GSH are commonly found in the drug-resistant human cancer cells. We designed a hammerhead ribozyme against gamma-GCS mRNA (anti-gamma-GCS Rz), which specifically down-regulated gamma-GCS gene expression in the HCT-8 human colon cancer cell line. The aim of this study was to reverse the cisplatin and multidrug resistance for anticancer drugs. The cisplatin-resistant HCT-8 cells (HCT-8DDP cells) overexpressed MRP and MDR1 genes, and showed resistance to not only cisplatin (CDDP), but also doxorubicin (DOX) and etoposide (VP-16). We transfected a vector expressing anti-gamma-GCS Rz into the HCT-8DDP cells (HCT-8DDP/Rz). The anti-gamma-GCS Rz significantly suppressed MRP and MDR, and altered anticancer drug resistance. The HCT-8DDP/Rz cells were more sensitive to CDDP, DOX and VP-16 by 1.8-, 4.9-, and 1.5-fold, respectively, compared to HCT-8DDP cells. The anti-gamma-GCS Rz significantly down-regulated gamma-GCS gene expression as well as MRP/MDR1 expression, and reversed resistance to CDDP, DOX and VP-16. These results suggested that gamma-GCS plays an important role in both cisplatin and multidrug resistance in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号