首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rce1p catalyzes the proteolytic trimming of C-terminal tripeptides from isoprenylated proteins containing CAAX-box sequences. Because Rce1p processing is a necessary component in the Ras pathway of oncogenic signal transduction, Rce1p holds promise as a potential target for therapeutic intervention. However, its mechanism of proteolysis and active site have yet to be defined. Here, we describe synthetic peptide analogues that mimic the natural lipidated Rce1p substrate and incorporate photolabile groups for photoaffinity-labeling applications. These photoactive peptides are designed to crosslink to residues in or near the Rce1p active site. By incorporating the photoactive group via p-benzoyl-l-phenylalanine (Bpa) residues directly into the peptide substrate sequence, the labeling efficiency was substantially increased relative to a previously-synthesized compound. Incorporation of biotin on the N-terminus of the peptides permitted photolabeled Rce1p to be isolated via streptavidin affinity capture. Our findings further suggest that residues outside the CAAX-box sequence are in contact with Rce1p, which has implications for future inhibitor design.  相似文献   

2.
3.
Eukaryotic proteins with carboxyl-terminal Ca(1)a(2) motifs undergo three posttranslational processing reactions--prenylation, endoproteolysis, and carboxymethylation. Two genes in yeast encoding Ca(1)a(2)X endoproteases, AFC1 and RCE1, have been identified. Rce1p is solely responsible for proteolysis of yeast Ras proteins. When proteolysis is blocked, localization of Ras2p to the outer membrane is impaired. The mislocalization of undermodified Ras in the cell suggests that Rce1p is an attractive target for cancer therapeutics. A biotinylated, farnesylated Ca(1)a(2)X peptide [(1-N-biotinyl-(13-N-succinimidyl-(S-(E,E-farnesyl)-L-cysteinyl)-L-valinyl-L-isoleucinyl-L-alanine))-4,7,10-trioxatridecanediamine] 1 containing a poly(ethylene glycol) linker was prepared by solid-phase synthesis for use in an assay for Ca(1)a(2)X endoprotease activity that relies on the strong affinity of avidin for biotin. The peptide was radiolabeled in the penultimate step of the synthesis by cleavage of the biotinylated, farnesylated Ca(1)a(2) precursor from Kaiser's oxime resin with [(14)C]-L-alanine methyl ester. [(14)C]1 was a good substrate for yRce1p with K(M) = 1.3 +/- 0.3 microM. Analysis of the carboxyl terminal products by reverse phase HPLC confirmed that VIA was the only radioactive fragment released upon incubation of [(14)C]1 with a yeast membrane preparation of recombinant yRce1p. The solid-phase methodology developed using Kaiser's benzophenone oxime resin to synthesize [(14)C]1 should be generally applicable for peptides containing sensitive side chains. In addition, introduction of the radiolabeled unit at the end of the synthesis mostly circumvents problems associated with handling radioactive materials.  相似文献   

4.
5.
Many proteins that contain a carboxyl-terminal CaaX sequence motif, including Ras and yeast a-factor, undergo a series of sequential posttranslational processing steps. Following the initial prenylation of the cysteine, the three C-terminal amino acids are proteolytically removed, and the newly formed prenylcysteine is carboxymethylated. The specific amino acids that comprise the CaaX sequence influence whether the protein can be prenylated and proteolyzed. In this study, we evaluated processing of a-factor variants with all possible single amino acid substitutions at either the a(1), the a(2), or the X position of the a-factor Ca(1)a(2)X sequence, CVIA. The substrate specificity of the two known yeast CaaX proteases, Afc1p and Rce1p, was investigated in vivo. Both Afc1p and Rce1p were able to proteolyze a-factor with A, V, L, I, C, or M at the a(1) position, V, L, I, C, or M at the a(2) position, or any amino acid at the X position that was acceptable for prenylation of the cysteine. Eight additional a-factor variants with a(1) substitutions were proteolyzed by Rce1p but not by Afc1p. In contrast, Afc1p was able to proteolyze additional a-factor variants that Rce1p may not be able to proteolyze. In vitro assays indicated that farnesylation was compromised or undetectable for 11 a-factor variants that produced no detectable halo in the wild-type AFC1 RCE1 strain. The isolation of mutations in RCE1 that improved proteolysis of a-factor-CAMQ, indicated that amino acid substitutions E139K, F189L, and Q201R in Rce1p affected its substrate specificity.  相似文献   

6.
G O Evans 《Jikken dobutsu》1989,38(2):163-164
Angiotensin converting enzyme (ACE; EC 3.4.15.1) activities were compared in plasma samples obtained from three species using a furanacryloyl tripeptide substrate. The enzyme activity observed in Wistar rat plasma was higher than the activities observed in the other two species. Using this substrate, human and canine plasma enzyme activities were similar-unlike published data where hippuryl-histidyl-leucine was used as substrate.  相似文献   

7.
Photoaffinity labeling of dopamine D1 receptors   总被引:5,自引:0,他引:5  
A high-affinity radioiodinated D1 receptor photoaffinity probe, (+/-)-7-[125I]iodo-8-hydroxy-3-methyl-1-(4-azidophenyl)-2,3,4,5-tetra hyd ro- 1H-3-benzazepine ([125I]IMAB), has been synthesized and characterized. In the absence of light, [125I]IMAB bound in a saturable and reversible manner to sites in canine brain striatal membranes with high affinity (KD approximately equal to 220 pM). The binding of [125I]IMAB was stereoselectively and competitively inhibited by dopaminergic agonists and antagonists with an appropriate pharmacological specificity for D1 receptors. The ligand binding subunit of the dopamine D1 receptor was visualized by autoradiography following photoaffinity labeling with [125I]IMAB and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Upon photolysis, [125I]IMAB incorporated into a protein of apparent agents in a stereoselective manner with a potency order typical of dopamine D1 receptors. In addition, smaller subunits of apparent Mr 62,000 and 51,000 were also specifically labeled by [125I]IMAB in these species. Photoaffinity labeling in the absence or presence of multiple protease inhibitors did not alter the migration pattern of [125I]IMAB-labeled subunits upon denaturing electrophoresis in both the absence or presence of urea or thiol reducing/oxidizing reagents. [125I]IMAB should prove to be a useful tool for the subsequent molecular characterization of the D1 receptor from various sources and under differing pathophysiological states.  相似文献   

8.
Photoaffinity labeling of A1-adenosine receptors   总被引:1,自引:0,他引:1  
The ligand-binding subunit of the A1-adenosine receptor has been identified by photoaffinity labeling. A photolabile derivative of R-N6-phenylisopropyladenosine, R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA), has been synthesized as a covalent specific ligand for A1-adenosine receptors. In adenylate cyclase studies with membranes of rat fat cells and human platelets, R-AHPIA has adenosine receptor agonist activity with a more than 60-fold selectivity for the A1-subtype. It competes for [3H]N6-phenylisopropyladenosine binding to A1-receptors of rat brain membranes with a Ki value of 1.6 nM. After UV irradiation, R-AHPIA binds irreversibly to the receptor, as indicated by a loss of [3H]N6-phenylisopropyladenosine binding after extensive washing; the Ki value for this photoinactivation is 1.3 nM. The p-hydroxyphenyl substituent of R-AHPIA can be directly radioiodinated to give a photoaffinity label of high specific radioactivity (125I-AHPIA). This compound has a KD value of about 1.5 nM as assessed from saturation and kinetic experiments. Adenosine analogues compete for 125I-AHPIA binding to rat brain membranes with an order of potency characteristic for A1-adenosine receptors. Dissociation curves following UV irradiation at equilibrium demonstrate 30-40% irreversible specific binding. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the probe is photoincorporated into a single peptide of Mr = 35,000. Labeling of this peptide can be blocked specifically and stereoselectively by adenosine receptor agonists and antagonists in a manner which is typical for the A1-subtype. The results indicate that 125I-AHPIA identifies the ligand-binding subunit of the A1-adenosine receptor, which is a peptide with Mr = 35,000.  相似文献   

9.
T4 endonuclease V recognizes thymine photodimers in DNA duplexes and, in a two-step reaction, cleaves the glycosyl linkage of the 5'-side thymidine and the phosphodiester linkage. To determine the amino acid residues responsible for binding thymine photodimers, a photoaffinity reagent, 4-(1-azi-2,2,2-trifluoroethyl)-benzoate, was linked to the aminoalkylphosphonate of a thymine photodimer in a 14-mer duplex. The reactive substrate was treated with the enzyme under UV light (365 nm). The nascent enzyme and the modified enzyme were treated with lysyl endopeptidase, and the peptide maps were compared. Three peptides from the C terminus were found to interact with the reactive oligonucleotide to various extents. The three modified peptides were isolated and analyzed by Edman degradation. The amino acid residues Gly-133, Tyr-129, and Thr-89 were partially linked with the reactive substrate and may be involved in the binding of thymine photodimers.  相似文献   

10.
A novel fluorescent photoactive probe 7-azido-4-methylcoumarin (AzMC) has been characterized for use in photoaffinity labeling of the substrate binding site of human phenol sulfotransferase (SULT1A1 or P-PST-1). For the photoaffinity labeling experiments, SULT1A1 cDNA was expressed in Escherichia coli as a fusion protein to maltose binding protein (MBP) and purified to apparent homogeneity over an amylose column. The maltose moiety was removed by Factor Xa cleavage. Both MBSULT1A1 and SULT1A1 were efficiently photolabeled with AzMC. This labeling was concentration dependent. In the absence of light, AzMC competitively inhibited the sulfation of 4MU catalyzed by SULT1A1 (Ki = 0.47 +/- 0.05 mM). Moreover, enzyme activity toward 2-naphthol was inactivated in a time- and concentration-dependent manner. SULT1A1 inactivation by AzMC was protected by substrate but was not protected by cosubstrate. These results indicate that photoaffinity labeling with AzMC is highly suitable for the identification of the substrate binding site of SULT1A1. Further studies are aimed at identifying which amino acids modified by AzMC are localized in the binding site.  相似文献   

11.
Quantitative analysis of ligand-occupied receptor interactions with elements of the cytoskeleton and with intracellular compartments requires a sensitive and simple method of identifying the receptor-ligand complex in living cells. Toward this goal, we have prepared a photoactivatable arylazide derivative of the chemotactic peptide N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys, which can be radiolabeled to high specific activity with 125I. This derivative was biologically active as judged by its ability to elicit superoxide anion production by human PMNL at nanomolar concentrations (ED50 approximately 0.7 nM). When incubated at 0 degree C with whole PMNL, radioactive ligand became specifically and saturably associated with a 60-70,000-dalton species (as assessed by SDS-PAGE) after exposure to UV light. Addition of 10-100-fold excess of unlabeled parent or unlabeled azidopeptide derivative completely blocked uptake into this species. Approximately 20-40% of the available surface receptor-binding sites were covalently labeled under these conditions. Subcellular fractionation of the labeled cells on sucrose gradients after homogenization showed that the labeled species was primarily associated with plasma membrane-rich fractions. The labeled receptor could be completely solubilized with Triton X-100 in a form which eluted as a single species with a Stoke's radius of less than 50 A on Sepharose 4B columns. In addition, the solubilized receptor-ligand complex bound specifically to wheat germ agglutinin, indicating that it is probably a glycoprotein. The ability to label the receptor in living PMNL with a high efficiency should facilitate the study of receptor dynamics and receptor physiochemical properties in this system.  相似文献   

12.
The concept of a local bone marrow renin-angiotensin system (RAS) has been introduced and accumulating evidence suggests that the local RAS is actively involved in hematopoiesis. Angiotensin converting enzyme (ACE) is a key player in the RAS and makes the final effector angiotensin II. Besides angiotensin II, ACE also regulates a panel of bioactive peptides, such as substance P, Ac-SDKP and angiotensin 1–7. These peptides have also been individually reported in the regulation of pathways of hematopoiesis. In this setting, an ACE-regulated peptide network orchestrating hematopoiesis has emerged. Here, we focus on this peptide network and discuss the roles of ACE and its peptides in aspects of hematopoiesis. Special attention is given to the recent revelation that ACE is a bona fide marker of hematopoietic stem cells.Key words: hematopoiesis, myelopoiesis, angiotensin converting enzyme (ACE), angiotensin II, AT1 receptor, renin-angiotensin system (RAS), substance P, Ac-SDKP, angiotensin 1–7  相似文献   

13.
G C Kundu  I B Wilson 《Life sciences》1992,50(13):965-970
An enzyme partially purified from bovine lung membranes appears to be endothelin converting enzyme (ECE). This enzyme specifically cleaves big endothelin-1 (big ET-1) at the proper site, between Trp21 and Val22, with maximum activity at pH 7.5 and with a Km of roughly 3 microM, to produce endothelin-1 (ET-1) and C-terminal peptide (CTP). This same enzyme hydrolyzes the fluorogenic substrate succinyl-Ile-Ile-Trp-methylcoumarinamide to release the highly fluorescent 7-amino-4-methylcoumarin. The peptide derivative has the same amino acid sequence as big ET-1 and is a good substrate with a Km of about 27 microM. This enzyme is a metalloproteinase. It is not inhibited by five common proteinase inhibitors (pepstatin A, PMSF, NEM, E-64 and thiorphan) but it is inhibited by phosphoramidon and chelating compounds. The apoenzyme is restored to nearly full activity by a zinc-EDTA buffer with pZn = 13.  相似文献   

14.
The concept of a local bone marrow renin-angiotensin system (RAS) has been introduced and accumulating evidence suggests that the local RAS is actively involved in hematopoiesis. Angiotensin converting enzyme (ACE) is a key player in the RAS and makes the final effector angiotensin II. Besides angiotensin II, ACE also regulates a panel of bioactive peptides, such as substance P, Ac-SDKP and angiotensin 1-7. These peptides have also been individually reported in the regulation of pathways of hematopoiesis. In this setting, an ACE-regulated peptide network orchestrating hematopoiesis has emerged. Here, we focus on this peptide network and discuss the roles of ACE and its peptides in aspects of hematopoiesis. Special attention is given to the recent revelation that ACE is a bona fide marker of hematopoietic stem cells.  相似文献   

15.
The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC(50) values of these 9 compounds were in the low micromolar range for both yeast (6-35 microM) and human Rce1p (0.4-46 microM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors.  相似文献   

16.
Little is known about the enzyme(s) required for the endoproteolytic processing of mammalian Ras proteins. We identified a mouse gene (designated Rce1) that shares sequence homology with a yeast gene (RCE1) implicated in the proteolytic processing of Ras2p. To define the role of Rce1 in mammalian Ras processing, we generated and analyzed Rce1-deficient mice. Rce1 deficiency was lethal late in embryonic development (after embryonic day 15.5). Multiple lines of evidence revealed that Rce1-deficient embryos and cells lacked the ability to endoproteolytically process Ras proteins. First, Ras proteins from Rce1-deficient cells migrated more slowly on SDS-polyacrylamide gels than Ras proteins from wild-type embryos and fibroblasts. Second, metabolic labeling of Rce1-deficient cells revealed that the Ras proteins were not carboxymethylated. Finally, membranes from Rce1-deficient fibroblasts lacked the capacity to proteolytically process farnesylated Ha-Ras, N-Ras, and Ki-Ras or geranylgeranylated Ki-Ras. The processing of two other prenylated proteins, the farnesylated Ggamma1 subunit of transducin and geranylgeranylated Rap1B, was also blocked. The absence of endoproteolytic processing and carboxymethylation caused Ras proteins to be mislocalized within cells. These studies indicate that Rce1 is responsible for the endoproteolytic processing of the Ras proteins in mammals and suggest a broad role for this gene in processing other prenylated CAAX proteins.  相似文献   

17.
18.
The CaaX proteases Rce1p and Ste24p can independently promote a proteolytic step required for the maturation of certain isoprenylated proteins. Although functionally related, Rce1p and Ste24p are unrelated in primary sequence. They have distinct enzymatic properties, which are reflected in part by their distinct inhibitor profiles. Moreover, Rce1p has an undefined catalytic mechanism, whereas Ste24p is an established zinc-dependent metalloprotease. This study demonstrates that both enzymes are inhibited by peptidyl (acyloxy)methyl ketones (AOMKs), making these compounds the first documented dual specificity inhibitors of the CaaX proteases. Further investigation of AOMK-mediated inhibition reveals that varying the peptidyl moiety can significantly alter the inhibitory properties of AOMKs toward Rce1p and Ste24p and that these enzymes display subtle differences in sensitivity to AOMKs. This observation suggests that this compound class could potentially be engineered to be selective for either of the CaaX proteases. We also demonstrate that the reported sensitivity of Rce1p to TPCK is substrate-dependent, which significantly alters the interpretation of certain reports having used TPCK sensitivity for mechanistic classification of Rce1p. Finally, we show that an AOMK inhibits the isoprenylcysteine carboxyl methyltransferase Ste14p. In sum, our observations raise important considerations regarding the specificity of agents targeting enzymes involved in the maturation of isoprenylated proteins, some of which are being developed as anti-cancer therapeutic agents.  相似文献   

19.
A de Waal  L de Jong  A F Hartog  A Kemp 《Biochemistry》1985,24(23):6493-6499
The synthesis is described of the photoaffinity label N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 for the peptide binding site of prolyl 4-hydroxylase. The photoaffinity label is a good substrate and is capable of light-induced inactivation of prolyl 4-hydroxylase activity. Inactivation depends on the concentration of photoaffinity label and is prevented by competition with excess (Pro-Pro-Gly)5. Two moles of photoaffinity label per mole of enzyme is needed for 100% inactivation of enzymic activity. Oxidative decarboxylation of 2-oxoglutarate measured in the absence of added peptide substrate is not affected by labeling. We conclude that the covalently bound nitreno derivative of N-(4-azido-2-nitrophenyl)glycyl-(Pro-Pro-Gly)5 acts by preventing the binding of peptide substrate to the catalytic site without interfering with the binding of the other substrates and cofactors 2-oxoglutarate, O2, Fe2+, and ascorbate. Labeling is specific for the alpha subunit of the tetrameric alpha 2 beta 2 enzyme. In addition to two catalytic binding sites that are blocked by the photoaffinity label, the enzyme contains binding subsites for peptide substrates, as judged from the capability of photoinactivated enzyme to bind to a poly(L-proline) affinity column. These binding subsites may account for the rapidly increasing affinity for peptide substrates with increasing chain length.  相似文献   

20.
We report the synthesis of fluorescently labeled ubiquitin (Ub) and its use for following ubiquitin transfer to various proteins. Using Oregon green (Og) succinimidyl ester, we prepared a population of Ub mainly labeled by a single Og molecule; greater than 95% of the Og label is associated with Lys 6 of Ub. We demonstrate that Og-Ub is efficiently accepted by Ub-utilizing enzymes, such as the human ubiquitin-activating enzyme (E1). We used this fluorescent substrate to follow the steady-state kinetics of human E1-catalyzed Ub-transfer to the ubiquitin-carrier enzyme Ubc4. In this reaction, E1 uses three substrates: ATP, Ubc4, and Ub. The steady-state kinetics of Og-Ub utilization by E1 is presented. We have also used analytical ultracentrifugation methods to establish that E1 is monomeric under our assay condition (low salt) as well as under physiological condition (150 mM NaCl).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号