首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Massive coral bleaching events result in extensive coral loss throughout the world. These events are mainly caused by seawater warming, but are exacerbated by the subsequent decrease in nutrient availability in surface waters. It has therefore been shown that nitrogen, phosphorus or iron limitation contribute to the underlying conditions by which thermal stress induces coral bleaching. Generally, information on the trophic ecology of trace elements (micronutrients) in corals, and on how they modulate the coral response to thermal stress is lacking. Here, we demonstrate for the first time that heterotrophic feeding (i.e. the capture of zooplankton prey by the coral host) and thermal stress induce significant changes in micro element concentrations and isotopic signatures of the scleractinian coral Stylophora pistillata. The results obtained first reveal that coral symbionts are the major sink for the heterotrophically acquired micronutrients and accumulate manganese, magnesium and iron from the food. These metals are involved in photosynthesis and antioxidant protection. In addition, we show that fed corals can maintain high micronutrient concentrations in the host tissue during thermal stress and do not bleach, whereas unfed corals experience a significant decrease in copper, zinc, boron, calcium and magnesium in the host tissue and bleach. In addition, the significant increase in δ65Cu and δ66Zn signature of symbionts and host tissue at high temperature suggests that these isotopic compositions are good proxy for stress in corals. Overall, present findings highlight a new way in which coral heterotrophy and micronutrient availability contribute to coral resistance to global warming and bleaching.  相似文献   

2.
Several techniques have been developed to quantify the degree of embolism of the xylem using hydraulic conductance. Although there have been several improvements to these techniques, their reliability is still questionable and many technical pitfalls persist. We are proposing here a manometric approach to improve the accuracy of xylem cavitation measurement by the original air-injection technique which uses twigs exposed to pressurized air to cause cavitation. The measured parameter is air bubble production (P b) caused by xylem cavitation in birch (Betula pendula Roth) twigs from which the percent increase in bubble production is calculated to quantify xylem cavitation. Data produced by three different methods (bench-drying, air-injection, and manometric approach) are compared. Xylem vulnerability curves (VCs) constructed by the reference and reliable bench-drying technique and the manometric approach show similar sigmoid “S” shape, but a small anomaly appeared in the VC constructed by the original air-injection technique. The xylem pressure inducing 50% of embolism (P 50) was the same with the three techniques. Furthermore, there was a strong positive correlation between the estimators of xylem cavitation measured by the three different methods. For its reliability, precision and ease we recommend the manometric technique as an improved version of the original hydraulic air-injection method.  相似文献   

3.
4.
5.
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.  相似文献   

6.
The role of clathrin adaptor proteins in sorting cargo in the biosynthetic and recycling routes is an area of intense research. In this issue, Delevoye et al. (2009. J. Cell Biol. doi:10.1083/jcb.200907122) show that a close interaction between the clathrin adaptor AP-1 and a kinesin motor KIF13A is essential for delivering melanogenic enzymes from recycling endosomes to nascent melanosomes and for organelle biogenesis.Melanosomes, along with platelet-dense granules and lung type II alveolar cell lamellar bodies, are lysosome-related organelles (LROs), compartments that originate from endosomes but are distinct from and usually coexist with lysosomes (Fig. 1). The most characteristic features of melanosomes are their ability to synthesize and store melanin and their presence in specialized pigmented cells such as skin melanocytes and iris and retinal pigment epithelial cells (Raposo and Marks, 2007; Wasmeier et al., 2008). In this issue, Delevoye et al. (see p. 247) report a melanogenic role for the clathrin adaptor AP-1 that involves interactions between the adaptor and the plus end kinesin motor KIF13A. An impressive set of data support a scenario in which the adaptor and the motor tightly interact, like in tango, to position donor recycling endosomes (REs) near nascent melanosomes at the cell periphery and to generate tubulovesicular intermediates that deliver newly synthesized pigmenting enzymes to melanosomes.Open in a separate windowFigure 1.Role of clathrin adaptor proteins in melanosome biogenesis. Post-Golgi trafficking routes of three melanosome cargoes (Pmel17, tyrosinase, and Tyrp1) in melanocytes are shown. Newly synthesized Pmel17 is transported to the limiting membrane and intraluminal vesicles of stage I melanosomes/early sorting endosomes via the plasma membrane. This process (depicted by a question mark) might involve clathrin and AP-2. From these EEA1-positive vacuolar endosomes, Pmel17 is sorted away from the late endosome/multivesicular body pathway into stage II melanosomes. Little is known as to how the enzymes essential for melanin synthesis, tyrosinase and Tyrp1, are sorted from the TGN to early REs, and it is likely that clathrin and its adaptors are involved in this process. Tyrosinase, which binds both AP-1 and -3, is transported to stage III melanosomes from tubular regions of REs, containing Tf/TfR and Rab11, by two distinct routes: one regulated by AP-3 and the other regulated by BLOC-1, BLOC-2, and perhaps AP-1. However, Tyrp1 binds only AP-1 and not AP-3, indicating a divergence of sorting mechanisms between tyrosinase and Tyrp1. Delevoye et al. (2009) now show that AP-1 interacts with the kinesin motor KIF13A to transport recycling endosomal domains to the melanocytic cell periphery. The close apposition of Tyrp1-containing tubules with melanosomes allows cargo transfer and biogenesis of stage III and IV melanosomes. Although Tf is found in these peripheral endosomal tubules, there appears to be a filtering mechanism that sorts it out before the tubules fuse with melanosomes. It is likely, although not yet confirmed, that BLOC-1 and -2 act in concert with AP-1 to transport Tyrp1. The tissue-specific Rabs, Rab32 and Rab38, might function in any or all of these pathways.Extensive studies have shown that melanosome biogenesis occurs in two waves that correspond to four morphologically distinct stages (Fig. 1; Marks and Seabra, 2001; Raposo and Marks, 2007). The first wave (stages I and II) is the formation of immature, pigment-free ellipsoidal melanosomes from vacuolar domains of early sorting endosomes. This process requires Pmel17, an integral membrane protein that likely reaches sorting endosomes by clathrin-dependent endocytosis from the plasma membrane. Upon proteolysis in the sorting endosomes/stage I melanosomes, Pmel17 forms intraluminal proteinaceous fibrils with characteristics of amyloid. The second wave starts with the post-Golgi transport of enzymes involved in melanin synthesis such as tyrosinase and tyrosinase-related protein 1 (Tyrp1) to nascent melanosomes. Melanin deposition occurs on Pmel17 fibrils and leads to the biogenesis of mature (stages III and IV) melanosomes. The clathrin adaptors AP-1 and -3 have partially redundant functions in sorting cargo proteins to melanosomes. Melanosomal cargo proteins have dileucine motifs that are recognized differentially by AP-1 and -3 in post-Golgi endosomes (Huizing et al., 2001; Theos et al., 2005). Nascent tyrosinase is found in distinct endosomal buds that contain either AP-3 or -1 in normal melanocytes and loss of AP-3 results only in a partial mislocalization of the enzyme. As these adaptors also mediate sorting from endosomes to other compartments, additional machinery, such as biogenesis of LRO complex 1 (BLOC-1), BLOC-2, and the tissue-specific small GTPases Rab32 and Rab38, regulate cargo delivery to melanosomes. Mutations in components of this melanosomal targeting machinery result in a variety of well-studied pigmentation defects in humans and animals such as Hermansky–Pudlak syndrome (Wei, 2006).Delevoye et al. (2009) show that knockdown of AP-1 in melanocytic MNT-1 cells decreases melanin content, demonstrating that AP-1 has a role in melanogenesis. Only late-stage (III/IV) melanosomes are decreased in number; unpigmented (stage I/II) melanosomes are unaffected, indicating that AP-1 functions selectively in the second wave of melanosome biogenesis. In AP-1–depleted cells, the melanosome cargo protein Tyrp1 is retained in vacuolar endosomes in a manner similar to that seen in BLOC-1–deficient melanocytes (Setty et al., 2007). Using immunofluorescence to monitor markers of various endosomal compartments, Delevoye et al. (2009) show that AP-1 performs its melanogenic function in early REs. Interestingly, additional data show that AP-1–containing REs have a peripheral distribution in MNT-1 cells, which is strikingly different from the perinuclear localization observed in other cells. Furthermore, siRNA-mediated knockdown of AP-1, but not of AP-3, relocates RE to a pericentriolar location.How might AP-1 influence endosome position? One possibility is by its association with the plus end–directed kinesin motor KIF13A (Fig. 1). Nakagawa et al. (2000) have previously shown that a subunit of AP-1 binds the C-terminal domain of KIF13A, mediating TGN to plasma membrane transport of the mannose 6-phosphate receptor. Indeed, Delevoye et al. (2009) show that KIF13A partially colocalizes with AP-1 in MNT-1 cells and coimmunoprecipitates with both AP-1 and Tyrp1. Furthermore, knockdown of KIF13A replicates the phenotype seen with AP-1 depletion: pericentriolar clustering of RE, accumulation of Tyrp1 in vacuolar endosomes, and reduction in mature melanosomes and melanin content. Delevoye et al. (2009) go on to show that the peripheral RE localization facilitates sorting of melanosomal proteins but decreases the efficiency of transferrin (Tf) receptor (TfR) recycling to the plasma membrane. They also show the converse; i.e., the pericentriolar localization of RE decreases the efficiency of melanosomal targeting and increases the efficiency of TfR recycling. Thus, the position of REs, determined by the interaction between a clathrin adaptor and a kinesin, is key for specific sorting functions of this organelle (like TfR recycling) and also regulates the biogenesis of another organelle (the melanosome). This is a novel and exciting finding and is an emerging theme in cell biology. It was recently reported that AP-1 interacts with another plus end–directed kinesin, KIF5, which helps transport endosomes to the cell periphery (Schmidt et al., 2009).The next question that Delevoye et al. (2009) approach is what is the nature of the carriers that transport melanosomal proteins from peripheral REs to immediately adjacent stage III/IV melanosomes? Live imaging experiments showed a dynamic network of Tf-containing RE tubules that extend and retract, making contact with melanosomes for at least 30 s. Double-tilt 3D electron tomography of thick (350–400 nm) sections of cells preserved by high pressure freezing and freeze substitution, a technique recently adapted to the study of melanosomes by Hurbain et al. (2008), revealed that some of these tubular elements are continuous with the melanosomal limiting membrane and that their lumens are often connected. Collectively, these results indicate that peripheral RE domains serve to deliver biosynthetic cargo to maturing melanosomes by the coordinated actions of AP-1 and KIF13A and that the mechanism involves tubular connections rather than vesicular transport (Fig. 1).The study by Delevoye et al. (2009) beautifully demonstrates the power of carefully chosen morphological and live imaging techniques, in combination with siRNA-mediated knockdown of molecules under study, to elucidate important details of cellular sorting processes. As always, several questions emerge from their results. Does this type of mechanism also operate in perinuclear REs, which were recently shown to cooperate with adjacent TGN in biosynthetic trafficking to the plasma membrane (Cancino et al., 2007; Gravotta et al., 2007)? Do newly synthesized melanosomal enzymes move from the TGN to REs using vesicular trafficking and clathrin adaptors or, rather, result from “maturation” of REs from the TGN? What is the role of clathrin in melanosome maturation? Are AP-1 and KIF13A essential for tubulogenesis from REs as the authors speculate? How are RE proteins (e.g., TfR) prevented from incorporating into melanosomes through the tubular connections? What is the mechanism that regulates docking and fusion of RE tubules with melanosomes? Likely, Rab32 and Rab38 participate in this process, as these proteins localize to tubulovesicular endosomal structures, and their loss causes mislocalization of tyrosinase and Tyrp1 (Wasmeier et al., 2006), but the SNAREs (if any) that participate in the mechanism are still unknown. Lastly, another intriguing aspect of this study is how adaptors sort proteins by differential recognition of dileucine motifs. Tyrp1 also has a dileucine motif that exclusively binds AP-1, but not AP-3, in melanocytic cells (Theos et al., 2005), whereas tyrosinase has dileucine motifs that bind AP-1 and -3, indicating that not all dileucine motifs are equal in the eyes of the adaptor.  相似文献   

7.
The fine structure of the colonial volvocacean alga Eudorina illinoiensis (Kofoid) Pascher is described in detail, excepting the eye spot. The structure conforms closely to the Chlamydomonas type and helps confirm that certain ultrastructural features are peculiar to certain taxonomic groups, the characteristic structure of the transitional region of the flagellum being an example in this case. A spiral filament around the outer doublets of the axoneme is newly reported.

Particular attention is given to the flagellar apparatus and to the structure of the chloroplast in relation to the pyrenoid. Small stacks of thylakoids pass between the starch plates to enter the pyrenoid where they assume a tubular form. The spatial re-organisations required to achieve this are described.  相似文献   

8.
A decrease in salinity and temperature over the past 3000 years has presented the marine algae of the Baltic Sea with very considerable problems in adaptation. The effects of salinity upon a number of Baltic algae have been measured. The results showed cell mortality to be severe in 0, 68 and 102‰, and minimal in 6 and 11‰: there was most variation in tolerance to 34 and 51‰. The salt tolerances of Baltic marine algae have proved more hyposaline than those of British intertidal algae. Water uptake and loss in tissues of Chorda filum and Fucus vesiculosus from Baltic and British populations have been measured in response to salinity changes. The results revealed significant population differences in both live and killed tissues. Receptacle development and oogonial maturation have been observed in Baltic and British F. vesiculosus, and found to differ in seasonality. Some observations were associated with local sea temperatures but differences in the timing of receptacle initiation and in oogonial size were not. Th depauperate thallus, commonly ascribed to the effects of low salinity, was found to be a complicated phenomenon, comprising numerous attributes which are combined differently in different taxa. The morphological differences between Baltic and British marine algae were usually striking.

The marine algae of the Baltic Sea have therefore diverged in a number of ways from their N. Atlantic counterparts. The naturally high variability of these taxa has enabled them to survive the period of increasingly strong selection pressure which followed the Littorina Sea episode. Divergence seems not to have advanced to the point where speciation may be said to have occurred. The Baltic may therefore be contrasted with the much older Mediterranean Sea, which contains a large number of endemic species. Nevertheless, the Baltic is a site of very considerable evolutionary importance.  相似文献   

9.
Lim RY  Aebi U  Stoffler D 《Chromosoma》2006,115(1):15-26
Nuclear pore complexes (NPCs) are large supramolecular assemblies that perforate the double-membraned nuclear envelope and serve as the sole gateways of molecular exchange between the cytoplasm and the nucleus in interphase cells. Combining novel specimen preparation regimes with innovative use of high-resolution scanning electron microscopy, Hans Ris produced in the late eighties stereo images of the NPC with unparalleled clarity and structural detail, thereby setting new standards in the field. Since that time, efforts undertaken to resolve the molecular structure and architecture, and the numerous interactions that occur between NPC proteins (nucleoporins), soluble transport receptors, and the small GTPase Ran, have led to a deeper understanding of the functional role of NPCs in nucleocytoplasmic transport. In spite of these breakthroughs, getting to the bottom of the actual cargo translocation mechanism through the NPC remains elusive and controversial. Here, we review recent insights into NPC function by correlating structural findings with biochemical data. By introducing new experimental and computational results, we reexamine how NPCs can discriminate between receptor-mediated and passive cargo to promote vectorial translocation in a highly regulated manner. Moreover, we comment on the importance and potential benefits of identifying and experimenting with individual key components implicated in the translocation mechanism. We conclude by dwelling on questions that we feel are pertinent to a more rational understanding of the physical aspects governing NPC mechanics. Last but not least, we substantiate these uncertainties by boldly suggesting a new direction in NPC research as a means to verify such novel concepts, for example, a de novo designed ‘minimalist’ NPC. This article is dedicated to the memory of Hans Ris.  相似文献   

10.
Friend T 《Lab animal》2000,29(2):36-37
The author recently wrote about the animal use/animal rights battle and the increasing violence on the part of animal rights activists. He recounts being an outsider learning about the field and the issues at hand, lending insight into how the LAS field might better communicate with the communicators.  相似文献   

11.
The peripheral axons of vertebrate tactile somatosensory neurons travel long distances from ganglia just outside the central nervous system to the skin. Once in the skin these axons form elaborate terminals whose organization must be regionally patterned to detect and accurately localize different kinds of touch stimuli. This review describes key studies that identified choice points for somatosensory axon growth cones and the extrinsic molecular cues that function at each of those steps. While much has been learned in the past 20 years about the guidance of these axons, there is still much to be learned about how the peripheral axons of different kinds of somatosensory neurons adopt different trajectories and form specific terminal structures.  相似文献   

12.
Michael Tooley 《Bioethics》2014,28(4):163-165
In my commentary on Francesca Minerva's article ‘New Threats to Academic Freedom’, I agree with her contention that the existence of the Internet has given rise to new and very serious threats to academic freedom. I think that it is crucial that we confront those threats, and find ways to eliminate them, which I believe can be done. The threats in question involve both authors and editors. In the case of authors, I argue that the best solution is not anonymous publication, but publication using pseudonyms, and I describe how that would work. In the case of editors, my proposal is a website that a number of journals would have access to, where papers that editors judge to be clearly worthy of publication, but whose publication seems likely to set off a firestorm of public and media protest, could be published without any indication of the journal that had accepted the paper for publication.  相似文献   

13.
Fifty mandibles belonging to the Byzantium period were studied in order to determine to racial differences about of the localization of the mental foramen according to the mandibular teeth. Mandibles of adult males without missing teeth, proximal decay and proximal attrition were used. On the right side, the most common position of the mental foramen was between the first and second lower teeth (50%), whereas on the left side, the most common position was in line with the longitudinal axis of the lower second premolar tooth (46%). Because of materials including mostly Alpine's and a few of Mediterranean subraces, two different positions of the mental foramen were determined in high similar ratios.  相似文献   

14.
Social inventions are new ways of solving human problems. This article reports on an action research project designed to find social inventions to reduce structural lag in four programs that support the transition to adulthood of marginalized youth in Latin America. The investigators engaged youth and staff members in identifying important questions, collecting and interpreting data, and using findings to improve their practices. Their issues aligned with social setting features: activities, resources, roles, and norms. Among their social inventions were “the life project,” the role of mentor, youth responsibility, and new norms of reflection introduced by action research, which not only revealed social inventions but generated them as well. Interaction with external parties contributed to this process: the investigators, “local researchers” engaged as part of the project, participants in conferences convened for participants. Rather than recommending social inventions for adoption in other locations, we recommend using action research to generate local social inventions.  相似文献   

15.
We present a unique case demonstrating contributions of the pulvinar in response to visual threat. Substantial evidence demonstrates that the amygdala contributes to the emotion of fear and the response to threat. Traditionally, two routes to amygdala activation have been distinguished: a "slow cortical" route through visual and association cortex and a "fast subcortical" route through the thalamus. The pulvinar nucleus of the thalamus is well connected to the amygdala, suggesting that pulvinar damage might interfere with amygdala activation and response to threat. We tested this possibility in patient SM, who suffered complete loss of the left pulvinar. We measured interference from threatening images on goal-directed behavior. In SM's ipsilesional field, threatening images slowed responses more than pleasant images did. This interference decreased rapidly over time. In contrast, in SM's contralesional field, interference from threatening images was initially absent and then increased rather than decreased over time. Processing through the pulvinar therefore plays a significant role in generating response to visual threat. We suggest that, with disruption of the subcortical route to the amygdala, briefly presented images were not fully processed for threat. The reemergence of interference over time may reflect contributions of a slower route.  相似文献   

16.
A key to the management of hillstreams in relation to Fish Species Richness (FSR) and Shannon and Weaver Diversity Index (H) (Shannon and Weaver, 1949. The Mathematical Theory of Communications. Urbana, University of Illinois Press, IL, USA) using a multitude of factors such as altitude, water source, bed gradient, dominant channel materials and habitat type has been proposed on the basis of 10 study sites, belonging to three north Indian rivers namely; Ghaggar, Yamuna and Ganga. The selected streams are located between the altitudes ranging from 380 to 1524m. It has been observed that high altitude streams having steep gradient, boulder dominated substrate with rapids as the main habitat type had lower FSR (3–4) and H (0.55–0.99) as compared to hillstreams located in the lower altitudes having gentle gradient, cobble dominated substrate with pools, riffles, runs, rapids and cascades as the main habitats and have high FSR (6–14) and H (1.67–2.35). Types – A, B and F hillstreams were encountered when the hillstreams are classified after Rosgen (Applied River Morphology, Wildland Hydrology, Co, USA).  相似文献   

17.
A key to the management of hillstreams in relation to Fish Species Richness (FSR) and Shannon and Weaver Diversity Index (H) (Shannon and Weaver, 1949. The Mathematical Theory of Communications. Urbana, University of Illinois Press, IL, USA) using a multitude of factors such as altitude, water source, bed gradient, dominant channel materials and habitat type has been proposed on the basis of 10 study sites, belonging to three north Indian rivers namely; Ghaggar, Yamuna and Ganga. The selected streams are located between the altitudes ranging from 380 to 1524m. It has been observed that high altitude streams having steep gradient, boulder dominated substrate with rapids as the main habitat type had lower FSR (3–4) and H (0.55–0.99) as compared to hillstreams located in the lower altitudes having gentle gradient, cobble dominated substrate with pools, riffles, runs, rapids and cascades as the main habitats and have high FSR (6–14) and H (1.67–2.35). Types – A, B and F hillstreams were encountered when the hillstreams are classified after Rosgen (Applied River Morphology, Wildland Hydrology, Co, USA).  相似文献   

18.
Abstract

Hot commercial dishwashing detergent has been used to deparaffinize and hydrate formalin fixed, paraffin embedded sections for immunohistochemistry. Fifty-five antibodies, used routinely for diagnosis, were used to compare hot detergent dewaxing with the proprietary hydrocarbon-based dewaxing reagent supplied with the Bond Max immunohistochemistry system®. A 2% concentration of commercial dishwashing detergent in distilled water was heated to 90° C and paraffin sections were treated twice for 1 min each. Nearly all antibodies gave equivalent results except CD10 and CD57 (hydrocarbon-based dewaxing better) and CD45 and alpha fetoprotein (detergent dewaxing better); the differences, however, were minimal. There also was a significant cost saving using detergent dewaxing.  相似文献   

19.
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion.  相似文献   

20.
Plants to power: bioenergy to fuel the future   总被引:1,自引:0,他引:1  
Bioenergy should play an essential part in reaching targets to replace petroleum-based transportation fuels with a viable alternative, and in reducing long-term carbon dioxide emissions, if environmental and economic sustainability are considered carefully. Here, we review different platforms, crops, and biotechnology-based improvements for sustainable bioenergy. Among the different platforms, there are two obvious advantages to using lignocellulosic biomass for ethanol production: higher net energy gain and lower production costs. However, the use of lignocellulosic ethanol as a viable alternative to petroleum-based transportation fuels largely depends on plant biotechnology breakthroughs. We examine how biotechnology, such as lignin modification, abiotic stress resistance, nutrition usage, in planta expression of cell wall digestion enzymes, biomass production, feedstock establishment, biocontainment of transgenes, metabolic engineering, and basic research, can be used to address the challenges faced by bioenergy crop production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号