首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Fetal growth restriction (FGR) and coagulopathies are often associated with aberrant maternal inflammation. Moderate-intensity exercise during pregnancy has been shown to increase utero-placental blood flow and to enhance fetal nutrition as well as fetal and placental growth. Furthermore, exercise is known to reduce inflammation. To evaluate the effect of moderate-intensity exercise on inflammation associated with the development of maternal coagulopathies and FGR, Wistar rats were subjected to an exercise regime before and during pregnancy. To model inflammation-induced FGR, pregnant rats were administered daily intraperitoneal injections of E. coli lipopolysaccharide (LPS) on gestational days (GD) 13.5–16.5 and sacrificed at GD 17.5. Control rats were injected with saline. Maternal hemostasis was assessed by thromboelastography. Moderate-intensity exercise prevented LPS-mediated increases in white blood cell counts measured on GD 17.5 and improved maternal hemostasis profiles. Importantly, our data reveal that exercise prevented LPS-induced FGR. Moderate-intensity exercise initiated before and maintained during pregnancy may decrease the severity of maternal and perinatal complications associated with abnormal maternal inflammation.  相似文献   

2.
Preterm birth (PTB) is the single most important cause of perinatal and infant mortality worldwide. Maternal infection can result in PTB. We investigated the ability of a Broad Spectrum Chemokine Inhibitor (BSCI) to prevent infection‐induced PTB in mice. PTB was initiated in pregnant mice by intraperitoneal injection of lipopolysaccharide (LPS; 50 μg). Half the mice received BSCI (10 mg/kg) 24 hrs prior to and immediately before LPS administration. The impact of LPS alone or LPS plus BSCI was assessed on (i) injection‐to‐delivery interval, foetal survival rate, placental and neonates' weight; (ii) amniotic fluid and maternal plasma cytokine levels (by Luminex assay); foetal and maternal tissue cytokine gene expression levels (by Real‐Time RT‐PCR); (iii) immune cells infiltration into the uterine tissue (by stereological immunohistochemistry). Pre‐treatment with BSCI (i) decreased LPS‐induced PTB (64% versus 100%, P < 0.05); (ii) significantly attenuated cytokine/chemokine expression in maternal tissues (plasma, liver, myometrium, decidua); (iii) significantly decreased neutrophil infiltration in the mouse myometrium. BSCI‐treated mice in which PTB was delayed till term had live foetuses with normal placental and foetal weight. BSCI represents a promising new class of therapeutics for PTB. In a mouse model of preterm labour, BCSI suppresses systemic inflammation in maternal tissues which resulted in the reduced incidence of LPS‐mediated PTB. These data provide support for efforts to target inflammatory responses as a means of preventing PTB.  相似文献   

3.

Systemic inflammation triggered by lipopolysaccharide (LPS) administration disrupts blood–brain barrier (BBB) homeostasis in animal models. This event leads to increased susceptibility of several encephalic structures to potential neurotoxicants present in the bloodstream. In this study, we investigated the effects of alternate intraperitoneal injections of LPS on BBB permeability, social recognition memory and biochemical parameters in the striatum 24 h and 60 days after treatments. In addition, we investigated whether the exposure to a moderate neurotoxic dose of the herbicide paraquat could potentiate LPS-induced neurotoxicity. LPS administration caused a transient disruption of BBB integrity, evidenced by increased levels of exogenously administered sodium fluorescein in the striatum. Also, LPS exposure caused delayed impairment in social recognition memory (evaluated at day 38 after treatments) and increase in the striatal levels of 3-nitrotyrosine. These events were observed in the absence of significant changes in motor coordination and in the levels of tyrosine hydroxylase (TH) in the striatum and substantia nigra. PQ exposure, which caused a long-lasting decrease of striatal mitochondrial complex I activity, did not modify LPS-induced behavioral and striatal biochemical changes. The results indicate that systemic administration of LPS causes delayed social recognition memory deficit and striatal nitrosative stress in adult mice and that the coexposure to a moderately toxic dose of PQ did not magnify these events. In addition, PQ-induced inhibition of striatal mitochondrial complex I was also not magnified by LPS exposure, indicating the absence of synergic neurotoxic effects of LPS and PQ in this experimental model.

  相似文献   

4.
AimsEnvironmental information received by a mother can induce a phenotype change in her offspring, commonly known as a maternal effect (trans-generational effect). The present work verified the effects of lipopolysaccharide (LPS), which mimics bacterial infection, on maternal care and on the activity of related brain areas in F1 offspring, i.e., female rats that were prenatally exposed to LPS.Main methodsPregnant rats received 100 μg/kg of LPS intraperitoneally on gestational day (GD) 9.5. Female offspring of the F1 generation were mated to naïve males and were evaluated during their lactation period for open field, maternal and aggressive behaviors. Striatal and hypothalamic dopamine and serotonin levels and turnover were also evaluated. Furthermore, astrocyte protein expression in the nucleus accumbens (NA) was analyzed in F1 females to assess LPS-induced neuroinflammation.Key findingsPrenatal LPS did not change open field behavior but impaired both maternal and maternal aggressive behaviors in the F1 generation. LPS exposure also reduced both striatal levels of dopamine and serotonin and its metabolites, but induced no changes in NA astrocyte expression.SignificanceWe suggested that the observed impairments in the F1 females were a consequence of a motivational change induced by prenatal LPS, as (1) no changes in motor activity were observed, (2) prenatal LPS-exposure was reported by our group to induce motivational impairments in males, and (3) the existence of a strong connection between striatal dopaminergic activity and motivation-oriented activities. The present findings strongly indicate a maternal effect for prenatal LPS, at least for the F1 generation.  相似文献   

5.
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.  相似文献   

6.
Endotoxin (lipopolysaccharide, LPS) has the property of inducing tolerance to its own biological effects. This phenomenon has been extensively studied in animal models but only few studies exist on the regulation in humans. Here we describe experiments designed to determine the cytokine regulation and cellular changes in humans during induction of LPS tolerance after repeated LPS injections. Intravenous administration of purified LPS Salmonella abortus equi to cancer patients induces high amounts of circulating tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), interleukin-8 (IL-8), granulocyte colony-stimulating factor (G-CSF), and macrophage colony-stimulating factor (M-CSF). Repeated injections of LPS at daily intervals resulted in a marked downregulation of the cytokine response and in the case of TNF-alpha, IL-8, G-CSF, and M-CSF the cytokine response was reduced to baseline levels. In contrast, significant increases in serum IL-6 were detected up to day 5 of repeated LPS injections. Hematological changes included transient decreases in WBCs affecting granulocytes, monocytes, and lymphocytes, followed by a marked granulocytosis. The drop in WBCs remained unaltered throughout the 5 day course of repeated LPS injections whereas the granulocyte overshoot recovery diminished gradually. When PBMCs of the cancer patients were restimulated ex vivo a marked enhancement of the capacity to produce TNF-alpha, IL-113, and IL-6 occurred, which is in contrast to the decreasing TNF-alpha serum levels obtained in vivo. In parallel, a shift in monocyte subpopulations from CD14+/CD16- to CD14+/CD16+ cells was observed. The data provide evidence that different mechanisms are implicated in the cytokine downregulation following repeated LPS injections to cancer patients. Furthermore, PBMCs from LPS tolerant patients do not demonstrate a reduction in their capacity to produce cytokines.  相似文献   

7.
Epidemiological studies report that 80% of the population maintains antibodies (Ab) to wild-type (wt) adeno-associated virus type 2 (AAV2), with 30% expressing neutralizing Ab (NAb). The blood-brain barrier (BBB) provides limited immune privilege to brain parenchyma, and the immune response to recombinant AAV (rAAV) administration in the brain of a naive animal is minimal. However, central nervous system transduction in preimmunized animals remains unstudied. Vector administration may disrupt the BBB sufficiently to promote an immune response in a previously immunized animal. We tested the hypothesis that intracerebral rAAV administration and readministration would not be affected by the presence of circulating Ab to wt AAV2. Rats peripherally immunized with live wt AAV2 and naive controls were tested with single intrastriatal injections of rAAV2 encoding human glial cell line-derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Striatal readministration of rAAV2-GDNF was also tested in preimmunized and naive rats. Finally, serotype specificity of the immunization against wt AAV2 was examined by single injections of rAAV5-GFP. Preimmunization resulted in high levels of circulating NAb and prevented transduction by rAAV2 as assessed by striatal GDNF levels. rAAV2-GFP striatal transduction was also prevented by immunization, while rAAV5-GFP-mediated transduction, as assessed by stereological cell counting, was unaffected. Additionally, inflammatory markers were present in those animals that received repeated administrations of rAAV2, including markers of a cell-mediated immune response and cytotoxic damage. A live virus immunization protocol generated the circulating anti-wt-AAV Ab seen in this experiment, while human titers are commonly acquired via natural infection. Regardless, the data show that the presence of high levels of NAb against wt AAV can reduce rAAV-mediated transduction in the brain and should be accounted for in future experiments utilizing this vector.  相似文献   

8.
The pathogenesis of inflammation in the central nervous system (CNS), which contributes to numerous neurodegenerative diseases and results in encephalopathy and neuroinflammation, is poorly understood. Sphingolipid metabolism plays a crucial role in maintaining cellular processes in the CNS, and thus mediates the various pathological consequences of inflammation. For a better understanding of the role of sphingosine kinase activation during neuroinflammation, we developed a bacterial lipopolysaccharide (LPS)-induced brain injury model. The onset of the inflammatory response was observed beginning 4 hours after intracerebral injection of LPS into the lateral ventricles of the brain. A comparison of established neuroinflammatory parameters such as white matter rarefactions, development of cytotoxic edema, astrogliosis, loss of oligodendrocytes, and major cytokines levels in wild type and knockout mice suggested that the neuroinflammatory response in SphK1-/- mice was significantly upregulated. At 6 hours after intracerebroventricular injection of LPS in SphK1-/- mice, the immunoreactivity of the microglia markers and astrocyte marker glial fibrillary acidic protein (GFAP) were significantly increased, while the oligodendrocyte marker O4 was decreased compared to WT mice. Furthermore, western blotting data showed increased levels of GFAP. These results suggest that SphK1 activation is involved in the regulation of LPS induced brain injury. RESEARCH HIGHLIGHTS: ? Lipopolysaccharide (LPS) intracerebral injection induces severe neuroinflammation. ? Sphingosine kinase 1 deletion worsens the effect of the LPS. ? Overexpression of SphK1 might be a potential new treatment approach to neuroinflammation.  相似文献   

9.
10.
Human epidemiological and animal studies have revealed the late consequences of malnutrition during gestation and early life on the health of the offspring. These studies have highlighted the inverse relationship between birth weight and the incidence of insulin resistance and type 2 diabetes later in life. The aim of this paper is to review the different means of achieving foetal malnutrition and its consequences even for a next generation, in animal models and to identify key area for further research. We address the impact of two models of maternal malnutrition (protein restriction and caloric restriction) as well as the impact of maternal diabetes, the three maternal conditions leading to perturbed foetal nutritional environment. Particular emphasis is given to the endocrine pancreas and the insulin sensitive tissues. More specifically, alterations of the foetal nutritional environment perturb the development of the endocrine pancreas and target the ss cell mass at birth. Some adaptations later in life may take place but stress situations such as pregnancy and ageing precipitate the animals to glucose intolerance and insulin resistance. Even the next generation features alterations in the development of the endocrine pancreas. Some mechanisms by which the foetal ss cell mass is altered are approached in this review and specific attention is paid to the amino acid profile. The preventive role of taurine is discussed.  相似文献   

11.
BackgroundHuman exposure to mercury leads to a variety of pathologies involving numerous organ systems including the immune system. A paucity of epidemiological studies and suitable diagnostic criteria, however, has hampered collection of sufficient data to support a causative role for mercury in autoimmune diseases. Nevertheless, there is evidence that mercury exposure in humans is linked to markers of inflammation and autoimmunity. This is supported by experimental animal model studies, which convincingly demonstrate the biological plausibility of mercury as a factor in the pathogenesis of autoimmune disease.Scope of the reviewIn this review, we focus on ability of mercury to elicit inflammatory and autoimmune responses in both humans and experimental animal models.Major conclusionsAlthough subtle differences exist, the inflammatory and autoimmune responses elicited by mercury exposure in humans and experimental animal models show many similarities. Proinflammatory cytokine expression, lymphoproliferation, autoantibody production, and nephropathy are common outcomes. Animal studies have revealed significant strain dependent differences in inflammation and autoimmunity suggesting genetic regulation. This has been confirmed by the requirement for individual genes as well as genome wide association studies. Importantly, many of the genes required for mercury-induced inflammation and autoimmunity are also required for idiopathic systemic autoimmunity. A notable difference is that mercury-induced autoimmunity does not require type I IFN. This observation suggests that mercury-induced autoimmunity may arise by both common and specific pathways, thereby raising the possibility of devising criteria for environmentally associated autoimmunity.General significanceMercury exposure likely contributes to the pathogenesis of autoimmunity.  相似文献   

12.
The placenta is a transitory organ, located between the mother and the foetus, which supports intrauterine life. This organ has nutritional, endocrine and immunologic functions to support foetal development. Several factors are related to the correct functioning of the placenta including foetal and maternal blood flow, appropriate nutrients, expression and function of receptors and transporters, and the morphology of the placenta itself. Placental morphology is crucial for understanding the pathophysiology of the organ as represents the physical structure where nutrient exchange occurs. In pathologies of pregnancy such as diabetes mellitus in humans and animal models, several changes in the placental morphology occur, related mainly with placental size, hypervascularization, higher branching capillaries of the villi and increased glycogen deposits among others. Gestational diabetes mellitus is associated with modifications in the structure of the human placenta including changes in the surface area and volume, as well as histological changes including an increased volume of intervillous space and terminal villi, syncytiotrophoblast number, fibrinoid areas, and glycogen deposits. These modifications may result in functional changes in this organ thus limiting the wellbeing of the developing foetus. This review gives an overview of recurrent morphological changes at macroscopic and histological levels seen in the placenta from gestational diabetes in humans and animal models. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.  相似文献   

13.
Perinatal infections are a risk factor for fetal neurological pathologies, including cerebral palsy and schizophrenia. Cytokines that are produced as part of the inflammatory response are proposed to partially mediate the neurological injury. This study investigated the effects of intraperitoneal injections of lipopolysaccharide (LPS) to pregnant rats on the production of cytokines and stress markers in the fetal environment. Gestation day 18 pregnant rats were treated with LPS (100 microg/kg body wt i.p.), and maternal serum, amniotic fluid, placenta, chorioamnion, and fetal brain were harvested at 1, 6, 12, and 24 h posttreatment to assay for LPS-induced changes in cytokine protein (ELISA) and mRNA (real-time RT-PCR) levels. We observed induction of proinflammatory cytokines interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha (TNF-alpha) as well as the anti-inflammatory cytokine IL-10 in the maternal serum within 6 h of LPS exposure. Similarly, proinflammatory cytokines were induced in the amniotic fluid in response to LPS; however, no significant induction of IL-10 was observed in the amniotic fluid. LPS-induced mRNA changes included upregulation of the stress-related peptide corticotropin-releasing factor in the fetal whole brain, TNF-alpha, IL-6, and IL-10 in the chorioamnion, and TNF-alpha, IL-1 beta, and IL-6 in the placenta. These findings suggest that maternal infections may lead to an unbalanced inflammatory reaction in the fetal environment that activates the fetal stress axis.  相似文献   

14.
The mechanism of diabetic embryopathy is not known. Excessive reactive oxygen species (ROS) produced in diabetes may be causally related to foetal anomalies. The objective of this study was to determine whether supplementation with the antioxidant lipoic acid (LA) could prevent maternal diabetes-related foetal malformations and intrauterine growth retardation (IUGR) in rats. Pregnant rats were non-treated (Group I) or made diabetic on gestation day (GD) 2 by injecting streptozotocin (Group II). Group III was injected with 20 mg kg(-1) of LA daily starting on GD 6 and continued through GD 19. Group IV was administered only Tris buffer on the corresponding days. Group V was a set of STZ-treated animals, which were supplemented with a daily dose of 20 mg kg(-1) of LA from GD 6 through GD 19. All fetuses were collected on GD 20. Lipoic acid did not affect the blood sugar levels of diabetic animals significantly but improved their body weight gain and reduced food and water consumption. Diabetic group had a high incidence of embryonic resorption, IUGR, craniofacial malformations, supernumerary ribs and skeletal hypoplasia. Lipoic acid significantly reduced these abnormalities. These data support the hypothesis that ROS are causally related to fetal maldevelopment and IUGR associated with maternal diabetes in the rat. They also highlight the possible role of antioxidants in the normal processes of embryo survival, growth and development.  相似文献   

15.
Apoptosis and rabies virus neuroinvasion   总被引:3,自引:0,他引:3  
Baloul L  Lafon M 《Biochimie》2003,85(8):777-788
Rabies virus (RV) causes a non-lytic infection of neurons leading to a fatal myeloencephalitis in mammals including humans. By comparing the infection of the nervous system of mice by a highly pathogenic neuroinvasive strain of RV (CVS) and by a strain of attenuated pathogenicity (PV) with restricted brain invasion, we showed that RV neuroinvasiveness results of three factors: not only neurotropic RV avoids induced neuron cell death but also "protective" T cells that migrate into the infected nervous system are killed by apoptosis and finally inflammation of the infected nervous system is limited. Our data suggest that the preservation of the neuronal network, the limitation of the inflammation and the destruction of T cells that invade the CNS in response to the infection are crucial events for RV neuroinvasion and for transmission of RV to another animal.  相似文献   

16.
Inflammation has been associated with the progression of many neurological diseases. Peripheral inflammation has also been vaguely linked to depression-like symptoms in animal models, but the underlying pathways that orchestrate inflammation-induced behavioral or molecular changes in the brain are still elusive. We have recently shown that intraperitoneal injections of lipopolysaccharide (LPS) to Swiss albino mice triggers systemic inflammation, leading to an activated immune response along with changes in monoamine levels in the brain. Herein we pinpoint the fundamental pathways linking peripheral inflammation and depression-like behavior in a mouse model, thereby identifying suitable targets of intervention to combat the situation. We show that LPS-induced peripheral inflammation provoked a depression-like behavior in mice and a distinct pro-inflammatory bias in the hippocampus, as evident from increased microglial activation and elevated levels of pro-inflammatory cytokines IL-6 and TNF-α, and activation of NFκB-p65 pathway. Significant alterations in Nrf2-dependent cellular redox status, coupled with altered autophagy and increased apoptosis were noticed in the hippocampus of LPS-exposed mice. We and others have previously shown that, fluoxetine (an anti-depressant) has effective anti-inflammatory and antioxidant properties by virtue of its abilities to regulate NFκB and Nrf2 signaling. We observed that treatment with fluoxetine or the Nrf2 activator tBHQ (tert-butyl hydroquinone), could reverse depression-like-symptoms and mitigate alterations in autophagy and cell death pathways in the hippocampus by activating Nrf2-dependent gene expressions. Taken together, the data suggests that systemic inflammation potentiates Nrf2-dependent changes in cell death and autophagy pathway in the hippocampus, eventually leading to major pathologic sequelae associated with depression. Therefore, targeting Nrf2 could be a novel approach in combatting depression and ameliorating its associated pathogenesis.  相似文献   

17.
Royal jelly (RJ) is known to have a variety of biological activities toward various types of cells and tissues of animal models, but nothing is known about its effect on brain functions. Hence, we examined the effect of oral administration of RJ on the mRNA expression of various neurotrophic factors, their receptors, and neural cell markers in the mouse brain. Our results revealed that RJ selectively facilitates the mRNA expression of glial cell line-derived neurotrophic factor (GDNF), a potent neurotrophic factor acting in the brain, and neurofilament H, a specific marker predominantly found in neuronal axons, in the adult mouse hippocampus. These observations suggest that RJ shows neurotrophic effects on the mature brain via stimulation of GDNF production, and that enhanced expression of neurofilament H mRNA is involved in events subsequently caused by GDNF. RJ may play neurotrophic and/or neuroprotective roles in the adult brain through GDNF.  相似文献   

18.
Prenatal infection is a major risk responsible for the occurrence of psychiatric conditions in infants. Mimicking maternal infection by exposing pregnant rodents to bacterial endotoxin lipopolysaccharide (LPS) also leads to major brain disorders in the offspring. The mechanisms of LPS action remain, however, unknown. Here, we show that LPS injection during pregnancy in rats, 2 days before delivery, triggered an oxidative stress in the hippocampus of male fetuses, evidenced by a rapid rise in protein carbonylation and by decreases in alpha-tocopherol levels and in the ratio of reduced/oxidized forms of glutathione (GSH/GSSG). Neither protein carbonylation increase nor decreases in alpha-tocopherol levels and GSH/GSSG ratio were observed in female fetuses. NMDA synaptic currents and long-term potentiation in CA1, as well as spatial recognition in the water maze, were also impaired in male but not in female 28-day-old offspring. Pretreatment with the antioxidant N-acetylcysteine prevented the LPS-induced changes in the biochemical markers of oxidative stress in male fetuses, and the delayed detrimental effects in male 28-day-old offspring, completely restoring both long-term potentiation in the hippocampus and spatial recognition performance. Oxidative stress in the hippocampus of male fetuses may thus participate in the neurodevelopmental damage induced by a prenatal LPS challenge.  相似文献   

19.
The mechanism of diabetic embryopathy is not known. Excessive reactive oxygen species (ROS) produced in diabetes may be causally related to foetal anomalies. The objective of this study was to determine whether supplementation with the antioxidant lipoic acid (LA) could prevent maternal diabetes-related foetal malformations and intrauterine growth retardation (IUGR) in rats. Pregnant rats were non-treated (Group I) or made diabetic on gestation day (GD) 2 by injecting streptozotocin (Group II). Group III was injected with 20 mg kg–1 of LA daily starting on GD 6 and continued through GD 19. Group IV was administered only Tris buffer on the corresponding days. Group V was a set of STZ-treated animals, which were supplemented with a daily dose of 20 mg kg–1 of LA from GD 6 through GD 19. All fetuses were collected on GD 20. Lipoic acid did not affect the blood sugar levels of diabetic animals significantly but improved their body weight gain and reduced food and water consumption. Diabetic group had a high incidence of embryonic resorption, IUGR, craniofacial malformations, supernumerary ribs and skeletal hypoplasia. Lipoic acid significantly reduced these abnormalities. These data support the hypothesis that ROS are causally related to fetal maldevelopment and IUGR associated with maternal diabetes in the rat. They also highlight the possible role of antioxidants in the normal processes of embryo survival, growth and development. (Mol Cell Biochem 261: 123–135, 2004)  相似文献   

20.
Activated astroglial cells are implicated in neuropathogenesis of many infectious and inflammatory diseases of the brain. A number of inflammatory mediators and cytokines have been proposed to play a key role in glial cell-related brain damage. Cytokine production seems to be initiated by signaling through TLR4/type I IL-1R (IL-1RI) in response to their ligands, LPS and IL-1beta, playing vital roles in innate host defense against infections, inflammation, injury, and stress. We have shown that glial cells are stimulated by ethanol, up-regulating cytokines and inflammatory mediators associated with TLR4 and IL-1RI signaling pathways in brain, suggesting that ethanol may contribute to brain damage via inflammation. We explore the possibility that ethanol, in the absence of LPS or IL-1beta, triggers signaling pathways and inflammatory mediators through TLR4 and/or IL-1RI activation in astrocytes. We show in this study that ethanol, at physiologically relevant concentrations, is capable of inducing rapid phosphorylation within 10 min of IL-1R-associated kinase, ERK1/2, stress-activated protein kinase/JNK, and p38 MAPK in astrocytes. Then an activation of NF-kappaB and AP-1 occurs after 30 min of ethanol treatment along with an up-regulation of inducible NO synthase and cyclooxygenase-2 expression. Finally, we note an increase in cell death after 3 h of treatment. Furthermore, by using either anti-TLR4- or anti-IL-1RI-neutralizing Abs, before and during ethanol treatment, we inhibit ethanol-induced signaling events, including NF-kappaB and AP-1 activation, inducible NO synthase, and cyclooxygenase-2 up-regulation and astrocyte death. In summary, these findings indicate that both TLR4 and IL-1RI activation occur upon ethanol treatment, and suggest that signaling through these receptors mediates ethanol-induced inflammatory events in astrocytes and brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号