首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Series of purine and pyrazolo[3,4-d]pyrimidine inhibitors of phosphatidylinositol-3-kinases (PI3K) have been prepared. The optimized purine inhibitors show good potency in a PI3K p110α (PI3K-α) fluorescence polarization assay with good selectivity versus PI3K p110γ (PI3K-γ) and the mammalian target of rapamycin (mTOR). The related pyrazolo[3,4-d]pyrimidines show potent PI3K-α and mTOR inhibition with good selectivity versus PI3K-γ. Representative compounds showed activity in a cellular proliferation assay against Caco-2 colorectal, LoVo colorectal and PC3MM2 prostate adenocarcinoma cancer cells. Signaling through the PI3K pathway was confirmed via inhibition of phospho-AKT in MDA-361 cells.  相似文献   

2.
3.
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that phosphorylate phosphatidylinositol 4,5-bisphosphate to generate a key lipid second messenger, phosphatidylinositol 3,4,5-bisphosphate. PI3Kα and PI3Kγ require activation by RAS proteins to stimulate signaling pathways that control cellular growth, differentiation, motility and survival. Intriguingly, RAS binding to PI3K isoforms likely differ, as RAS mutations have been identified that discriminate between PI3Kα and PI3Kγ, consistent with low sequence homology (23%) between their RAS binding domains (RBDs). As disruption of the RAS/PI3Kα interaction reduces tumor growth in mice with RAS- and epidermal growth factor receptor driven skin and lung cancers, compounds that interfere with this key interaction may prove useful as anti-cancer agents. However, a structure of PI3Kα bound to RAS is lacking, limiting drug discovery efforts. Expression of full-length PI3K isoforms in insect cells has resulted in low yield and variable activity, limiting biophysical and structural studies of RAS/PI3K interactions. This led us to generate the first RBDs from PI3Kα and PI3Kγ that can be expressed at high yield in bacteria and bind to RAS with similar affinity to full-length PI3K. We also solved a 2.31 Å X-ray crystal structure of the PI3Kα-RBD, which aligns well to full-length PI3Kα. Structural differences between the PI3Kα and PI3Kγ RBDs are consistent with differences in thermal stability and may underly differential RAS recognition and RAS-mediated PI3K activation. These high expression, functional PI3K RBDs will aid in interrogating RAS interactions and could aid in identifying inhibitors of this key interaction.  相似文献   

4.
Phosphatidylinositol-3-kinase alpha (PI3Kα) is an important target in cancer due to the deregulation of the PI3K/AKT signaling pathway in many tumors. In this study, we designed [3,5-d]-7-azaindole analogs as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3,5-positions of azaindole, we developed the SAR (Structure-activity relationship) and identified a series of potent PI3Kα inhibitors. Representative azaindole derivatives showed activity in a cellular proliferation and apoptosis assays. Moreover, B3 exhibited strong antiangiogenic effects on cancer cells.  相似文献   

5.
A series of (hetero)arylpyrimidines agonists of the Wnt-β-catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3β inhibition indicating that the Wnt-β-catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1. Two examples 1 and 25 show in vivo osteogenic activity in a mouse calvaria model. One example 1 is shown to activate non-phosphorylated β-catenin formation in bone.  相似文献   

6.
Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3β (GSK-3β) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3β inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3β are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC50 values has the following statistics: R2(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R2 = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R2 = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3β. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.  相似文献   

7.
8.
The synthesis, structure–activity relationships (SAR) and structural data of a series of indolin-2-one inhibitors of RET tyrosine kinase are described. These compounds were designed to explore the available space around the indolinone scaffold within RET active site. Several substitutions at different positions were tested and biochemical data were used to draw a molecular model of steric and electrostatic interactions, which can be applied to design more potent and selective RET inhibitors. The crystal structures of RET kinase domain in complex with three inhibitors were solved. All three compounds bound in the ATP pocket and formed two hydrogen bonds with the kinase hinge region. Crystallographic analysis confirmed predictions from molecular modelling and helped refine SAR results. These data provide important information for the development of indolinone inhibitors for the treatment of RET-driven cancers.  相似文献   

9.
Herein we describe the SAR of a novel series of 6-aryl-2-amino-triazolopyridines as potent and selective PI3Kγ inhibitors. The 6-aryl-triazolopyridine core was identified by chemoproteomic screening of a kinase focused library. Rapid chemical expansion around a bi-functional core identified the key features required for PI3Kγ activity and selectivity. The series was optimized to afford 43 (CZC19945), a potent PI3Kγ inhibitor with high oral bioavailability and selectivity over PI3Kα and PI3Kδ. Modification to the core afforded 53 (CZC24832) which showed increased selectivity over the entire kinome in particular over PI3Kβ.  相似文献   

10.
The phosphatidylinositol 3-kinase α (PI3Kα) was genetically validated as a promising therapeutic target for developing novel anticancer drugs. In order to explore the structure-activity correlation of benzothiazole series as inhibitors of PI3Kα, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) were performed on 61 promising molecules to build 3D-QSAR models based on both the ligand- and receptor-based methods. The best CoMFA and CoMSIA models had a cross-validated coefficient r(cv)(2) of 0.618 and 0.621, predicted correlation coefficient r(pred) (2) of 0.812 and 0.83, respectively, proving their high correlative and predictive abilities on both the training and test sets. In addition, docking analysis and molecular dynamics simulation (MD) were also applied to elucidate the probable binding modes of these inhibitors at the ATP binding pocket. Based on the contour maps and MD results, some key structural factors responsible for the activity of this series of compounds were revealed as follows: (1) Ring-A has a strong preference for bulky hydrophobic or aromatic groups; (2) Electron-withdrawing groups at the para position of ring-B and hydrophilic substituents in ring-B region may benefit the potency; (3) A polar substituent like -NHSO(2)- between ring-A and ring-B can enhance the activity of the drug by providing hydrogen bonding interaction with the protein target. The satisfactory results obtained from this work strongly suggest that the developed 3D-QSAR models and the obtained PI3Kα inhibitor binding structures are reasonable for the prediction of the activity of new inhibitors and be helpful in future PI3Kα inhibitor design.  相似文献   

11.
The purpose of this work was to examine whether changes in dietary protein levels could elicit differential responses of tissue proteolysis and the pathway involved in this response. In rats fed with a high protein diet (55%) for 14?days, the liver was the main organ where adaptations occurred, characterized by an increased protein pool and a strong, meal-induced inhibition of the protein breakdown rate when compared to the normal protein diet (14%). This was associated with a decrease in the key-proteins involved in expression of the ubiquitin-proteasome and autophagy pathway gene and a reduction in the level of hepatic ubiquitinated protein. In hepatocytes, we demonstrated that the increase in amino acid (AA) levels was sufficient to down-regulate the ubiquitin proteasome pathway, but this inhibition was more potent in the presence of insulin. Interestingly, AICAR, an adenosine monophosphate-activated protein kinase (AMPK) activator, reversed the inhibition of protein ubiquination induced by insulin at high AA concentrations. Rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, reversed the inhibition of protein ubiquination induced by a rise in insulin levels with both high and low AA concentrations. Moreover, in both low and high AA concentrations in the presence of insulin, AICAR decreased the mTOR phosphorylation, and in the presence of both AICAR and rapamycin, AICAR reversed the effects of rapamycin. These results demonstrate that the inhibition of AMPK and the activation of mTOR transduction pathways, are required for the down-regulation of protein ubiquitination in response to high amino acid and insulin concentrations.  相似文献   

12.
13.
Learnings from previous Roche p38-selective inhibitors were applied to a new fragment hit, which was optimized to a potent, exquisitely selective preclinical lead with a good pharmacokinetic profile.  相似文献   

14.
Glycogen synthase kinase-3 is a constitutively acting, multifunctional serine threonine kinase, the role of which has been implicated in several physiological pathways and has emerged as a promising target for the treatment of type-II diabetes and Alzheimer’s disease. In order to provide a detailed understanding of the origin of selectivity determinants of ATP competitive inhibitors, molecular dynamics simulations in combination with MM-PBSA binding energy calculations were performed using crystal structures of GSK-3β and CDK-2 in complex with 12 ATP competitive inhibitors. Analysis of energy contributions indicate that electrostatic interaction energy dictates the selectivity of ATP competitive inhibitors against CDK-2. Key interactions as well as residues that potentially make a major contribution to the binding free energy were identified at the ATP binding site. This analysis stresses the need for the inhibitors to interact with Lys85, Thr138, and Arg141 in the binding site of GSK-3β to show selectivity. The residue-wise energy decomposition analysis further suggested the additional role of Gln185 in determining the selectivity of maleimides. The results obtained in this study can be utilized to design new selective GSK-3 ATP competitive inhibitors.  相似文献   

15.
16.
We investigated the inhibition of carbonic anhydrase (CA, EC 4.2.1.1) isoforms I–XV with 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylsulfamide and other simple or sugar sulfamides, a class of less investigated CA inhibitors (CAIs). The crystal structure of the adduct of hCA II with the boron-substituted sulfamide shows the organic scaffold of this compound bound in the hydrophilic half of the active site where it makes a large number of van der Waals contacts with Ile91, Gln92, Val121, Phe131, Leu198, and Thr200. The data here reported provide further insights into sulfamide binding mechanism confirming that this zinc-binding group could be usefully exploited for obtaining new potent and selective CAIs.  相似文献   

17.
A potent inhibitor of PI3Kδ that is ≥ 200 fold selective for the remaining three Class I PI3K isoforms and additional kinases is described. The hypothesis for selectivity is illustrated through structure activity relationships and crystal structures of compounds bound to a K802T mutant of PI3Kγ. Pharmacokinetic data in rats and mice support the use of 3 as a useful tool compound to use for in vivo studies.  相似文献   

18.
Cardiac myocyte growth is under differential control of mammalian target of rapamycin (mTOR) and glycogen-synthase-kinase-3β (GSK3β). Whereas active GSK3β negatively regulates growth and down-regulates cellular protein synthesis, activation of the mTOR pathway promotes protein expression and cell growth. Here we report that depletion of mTOR via siRNA mediated knockdown causes marked down-regulation of GSK3β protein in cardiac myocytes. As a result, GSK3β target protein β-catenin becomes stabilized and translocates into the nucleus. Moreover, mTOR knockdown leads to increase in cardiac myocyte surface area and produces an up-regulation of the fetal gene program. Our findings suggest a new type of convergence of mTOR and GSK3β activities, indicating that GSK3β-dependent stabilization of β-catenin in cardiac myocytes is influenced by mTOR.  相似文献   

19.
In the present study, a series of steroidal tetrazole derivatives of androstane and pregnane have been prepared in which the tetrazole moiety was appended at C-3 and 17a-aza locations. 3-Tetrazolo-3,5-androstadien-17-one (6), 3-tetrazolo-19-nor-3,5-androstadien-17-one (10), 3-tetrazolo-3,5-pregnadien-20-one (14), 17a-substituted 3-tetrazolo-17a-aza-d-homo-3,5-androstadien-17-one (2631) and 3-(2-acetyltetrazolo)-17a-aza-d-homo-3,5-androstadien-17-one (32) were synthesized from dehydroepiandrosterone acetate (1) through multiple synthetic steps. Some of the synthesized compounds were evaluated for their in vitro 5α-reductase (5AR) inhibitory activity by measuring the conversion of [3H] androstenedione in human embryonic kidney (HEK) cells. In vivo 5α-reductase inhibitory activity also showed a significant reduction (p <0.05) in rat prostate weight. The most potent compound 14 showed 5AR-2 inhibition with IC50 being 15.6 nM as compared to clinically used drug finasteride (40 nM). There was also a significant inhibition of 5AR-1 with IC50 547 nM compared to finasteride (453 nM).  相似文献   

20.
The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway plays a critical role in the regulation of cellular growth, survival and proliferation. mTOR and PI3K have attracted particular attention as cancer targets. These kinases belong to the phosphatidylinositol-3-kinase-related kinase (PIKK) family and therefore have considerable homology in their active sites. To accelerate the discovery of inhibitors with selective activity against mTOR and PI3K as cancer targets, in this work, a homology model of mTOR was developed to identify the structural divergence in the active sites between mTOR and PI3Kα. Furthermore, two highly predictive comparative molecular similarity index analyses (CoMSIA) models were built based on 304 selective inhibitors docked into mTOR and PI3Kα, respectively (mTOR: q 2 = 0.658, r pre2 = 0.839; PI3Kα: q 2 = 0.540, r pre2 = 0.719). The results showed that steric and electrostatic fields have an important influence on selectivity towards mTOR and PI3Kα—a finding consistent with the structural divergence between the active sites. The findings may be helpful in investigating selective mTOR/PI3Kα inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号