首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical feature based pharmacophore models were generated for Toll-like receptors 7 (TLR7) agonists using HypoGen algorithm, which is implemented in the Discovery Studio software. Several methods tools used in validation of pharmacophore model were presented. The first hypothesis Hypo1 was considered to be the best pharmacophore model, which consists of four features: one hydrogen bond acceptor, one hydrogen bond donor, and two hydrophobic features. In addition, homology modeling and molecular docking studies were employed to probe the intermolecular interactions between TLR7 and its agonists. The results further confirmed the reliability of the pharmacophore model. The obtained pharmacophore model (Hypo1) was then employed as a query to screen the Traditional Chinese Medicine Database (TCMD) for other potential lead compounds. One hit was identified as a potent TLR7 agonist, which has antiviral activity against hepatitis virus in vitro. Therefore, our current work provides confidence for the utility of the selected chemical feature based pharmacophore model to design novel TLR7 agonists with desired biological activity.  相似文献   

2.
Aryl diketoacids have been identified as the first SARS-CoV NTPase/helicase inhibitors with a distinct pharmacophore featuring an arylmethyl group attached to a diketoacid. In order to search for the pharmacophore space around the diketoacid core, three classes of dihydroxychromone derivatives were prepared. Based on SAR study, an extended feature of the pharmacophore model of SARS-CoV NTPase/helicase was proposed which is constituted of a diketoacid core, a hydrophobic arylmethyl substituent, and a free catechol unit.  相似文献   

3.
4.
A chemical feature based pharmacophore model was developed for alpha(1A)-adrenoceptor antagonists by HypoGen module implemented in catalyst software package. The best scoring pharmacophore hypothesis, Hypo1, consisted of four important chemical features (one positive ion, one hydrogen-bond donor, one aromatic ring, and one hydrophobic group). The results of our study provide a valuable tool in designing new leads with desired biological activity by virtual screening.  相似文献   

5.
Pharmacophore modelling, docking and virtual screening have become important tool in drug discovery process. Serotonin 2C (5-HT2C) receptor ligands have got major attention for their therapeutic uses as antidepressant and anorectic agents. Two step pharmacophore and docking based virtual screening was done using 5-HT2C agonists. Two common feature pharmacophore directed virtual hits had submicromolar activity. Refined pharmacophore with excluded volumes was constructed and combined with homology model based docking. Best hit from this virtual screening showed IC50 of 20.1 nM. Similarity search of this hit compound resulted more active ligand with 7.8 nM activity.  相似文献   

6.
Structure and ligand based pharmacophore modeling and docking studies carried out using diversified set of c-Jun N-terminal kinase-3 (JNK3) inhibitors are presented in this paper. Ligand based pharmacophore model (LBPM) was developed for 106 inhibitors of JNK3 using a training set of 21 compounds to reveal structural and chemical features necessary for these molecules to inhibit JNK3. Hypo1 consisted of two hydrogen bond acceptors (HBA), one hydrogen bond donor (HBD), and a hydrophobic (HY) feature with a correlation coefficient (r2) of 0.950. This pharmacophore model was validated using test set containing 85 inhibitors and had a good r2 of 0.846. All the molecules were docked using Glide software and interestingly, all the docked conformations showed hydrogen bond interactions with important hinge region amino acids (Gln155 and Met149) and these interactions were compared with Hypo1 features. The results of ligand based pharmacophore model (LBPM) and docking studies are validated each other. The structure based pharmacophore model (SBPM) studies have identified additional features, two hydrogen bond donors and one hydrogen bond acceptor. The combination of these methodologies is useful in designing ideal pharmacophore which provides a powerful tool for the discovery of novel and selective JNK3 inhibitors.  相似文献   

7.
The clinical efficacy of multiple kinase inhibitors has caught the interest of Pharmaceutical and Biotech researchers to develop potential drugs with multi-kinase inhibitory activity for complex diseases. In the present work, we attempted to identify dual inhibitors of spleen tyrosine kinase (Syk) and janus kinase 3 (JAK3), keys players in immune signaling, by developing ideal pharmacophores integrating Ligand-based pharmacophore models (LBPMs) and Structure-based pharmacophore models (SBPMs), thereby projecting the optimum pharmacophoric required for inhibition of both the kinases. The four point LBPM; ADPR.14 suggested the presence of one hydrogen bond acceptor, one hydrogen bond donor, one positive ionizable, and one ring aromatic feature for Syk inhibitory activity and AADH.54 proposed the necessity of two hydrogen bond acceptor, one hydrogen bond donor, and one hydrophobic feature for JAK3 inhibitory activity. To our interest, SBPMs identified additional ring aromatic features required for inhibition of both the kinases. For Syk inhibitory activity, the hydrogen bond acceptor feature indicated by LBPM was devoid of forming hydrogen bonding interaction with the hinge region amino acid residue (Ala451). Thus merging the information revealed by both LBPMs and SBPMs, ideal pharmacophore models i.e. ADPRR.14 (Syk) and AADHR.54 (JAK3) were generated. These models after rigorous statistical validation were used for screening of Asinex database. The systematic virtual screening protocol, including pharmacophore and docking-based screening, ADME property, and MM-GBSA energy calculations, retrieved final 10 hits as dual inhibitors of Syk and JAK3. Final 10 hits thus obtained can aid in the development of potential therapeutic agents for autoimmune disorders. Also the top two hits were evaluated against both the enzymes.  相似文献   

8.
Pharmacophore mapping studies were undertaken for a series of molecules belonging to pyrrolopyrimidines, indolopyrimidines and their congeners as multidrug resistance-associated protein (MRP1) modulators. A five-point pharmacophore with two hydrogen bond acceptors (A), one lipophilic/hydrophobic group (H), one positive ionic feature (P) and one aromatic ring (R) as pharmacophoric features was developed. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a correlation coefficient of r 2 = 0.799 for training set molecules. The model generated showed excellent predictive power, with a correlation coefficient Q 2 = 0.679 for an external test set of 20 molecules. The pharmacophore was further validated using four structurally diverse compounds with MRP1 modulatory activity. These compounds mapped well onto four of the five features of the pharmacophore. The pharmacophore proposed here was then utilised for the successful retrieval of active molecules with diverse chemotypes from database search. The geometry and features of pharmacophore are expected to be useful for the design of selective MRP1 inhibitors. Figure Alignment of multidrug resistance-associated protein (MRP1) inhibitors with the developed pharmacophore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Molecular docking and pharmacophore model approaches were used to characterise the binding features of four different series of Rho kinase (ROCK) inhibitors. Docking simulation of 20 inhibitors with ROCK was performed. The binding conformations and binding affinities of these inhibitors were obtained using AutoDock 4.0 software. The predicted binding affinities correlate well with the activities of these inhibitors (R 2 = 0.904). 3D pharmacophore models were generated for ROCK based on highly active inhibitors implemented in Catalyst 4.11 program. The best pharmacophore model consists of one hydrogen bond acceptor feature and two hydrophobic features, and they all seemed to be essential for inhibitors in terms of their binding activities. It is anticipated that the findings reported in this paper may provide very useful information for designing new ROCK inhibitors.  相似文献   

10.
A combined ligand and structure-based drug design approach provides a synergistic advantage over either methods performed individually. Present work bestows a good assembly of ligand and structure-based pharmacophore generation concept. Ligand-oriented study was accomplished by employing the HypoGen module of Catalyst in which we have translated the experimental findings into 3-D pharmacophore models by identifying key features (four point pharmacophore) necessary for interaction of the inhibitors with the active site of HIV-1 protease enzyme using a training set of 33 compounds belonging to the cyclic cyanoguanidines and cyclic urea derivatives. The most predictive pharmacophore model (hypothesis 1), consisting of four features, namely, two hydrogen bond acceptors and two hydrophobic, showed a correlation (r) of 0.90 and a root mean square of 0.71 and cost difference of 56.59 bits between null cost and fixed cost. The model was validated using CatScramble technique, internal and external test set prediction. In the second phase of our study, a structure-based five feature pharmacophore hypothesis was generated which signifies the importance of hydrogen bond donor, hydrogen bond acceptors and hydrophobic interaction between the HIV-1 protease enzyme and its inhibitors. This work has taken a significant step towards the full integration of ligand and structure-based drug design methodologies as pharmacophoric features retrieved from structure-based strategy complemented the features from ligand-based study hence proving the accuracy of the developed models. The ligand-based pharmacophore model was used in virtual screening of Maybridge and NCI compound database resulting in the identification of four structurally diverse druggable compounds with nM activities.  相似文献   

11.
Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r(2)?=?0.92, SD?=?0.16, F?=?84.8, N?=?40) and for test set (Q(2)?=?0.71, RMSE?=?0.06, Pearson R?=?0.90, N?=?10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.  相似文献   

12.
Pancreatic cholesterol esterase (CEase) is a serine hydrolase involved in the hydrolysis of variety of lipids and transport of free cholesterol. In this study, pharmacophore hypotheses based on known inhibitors were generated using common feature pharmacophore generation protocol available in Discovery Studio program. The best pharmacophore model containing two hydrogen bond acceptor and three hydrophobic features was selected and validated. It was further used in screening three diverse chemical databases. Hit compounds were subjected to drug-likeness and molecular docking studies. Four hits, namely SEW00846, NCI0040784, GK03167, and CD10645, were selected based on the GOLD fitness score and interaction with active site amino acids. All hit compounds were further optimized to improve their binding in the active site. The optimized compounds were found to have improved binding at the active site. Strongly binding optimized hits at the active site can act as virtual leads in potent CEase inhibitor designing.  相似文献   

13.
Inhibitors of the 5-Lipoxygenase (5-LOX) pathway have a therapeutic potential in a variety of inflammatory disorders such as asthma. In this study, chemical feature based pharmacophore models of inhibitors of 5-LOX have been developed with the aid of HipHop and HypoGen modules within Catalyst program package. The best quantitative pharmacophore model, Hypo1, which has the highest correlation coefficient (0.97), consists of two hydrogen-bond acceptors, one hydrophobic feature and one ring aromatic feature. Hypo1 was further validated by test set and cross validation method. The application of the model shows great success in predicting the activities of 65 known 5-LOX inhibitors in our test set with a correlation coefficient of 0.85 with a cross validation of 95% confidence level, proving that the model is reliable in identifying structurally diverse compounds for inhibitory activity against 5-LOX. Furthermore, Hypo1 was used as a 3D query for screening Maybridge and NCI databases within catalyst and also drug like compounds obtained from Enamine Ltd, which follow Lipinski’s rule of five. The hit compounds were subsequently subjected to filtering by docking and visualization, to identify the potential lead molecules. Finally 5 potential lead compounds, identified in the above process, were evaluated for their inhibitory activities. These studies resulted in the identification of two compounds with potent inhibition of 5-LOX activity with IC50 of 14 μM and 35 μM, respectively. These studies thus validate the pharmacophore model generated and suggest the usefulness of the model in screening of various small molecule libraries and identification of potential lead compounds for 5-LOX inhibition.  相似文献   

14.
To design a reliable 3D QSAR model of the intestinal Na(+)/bile acid cotransporter, we have used a training set of 17 inhibitors of the rabbit ileal Na(+)/bile acid cotransporter. The IC(50) values of the training set of compounds covered a range of four orders of magnitude for inhibition of [(3)H]cholyltaurine uptake by CHO cells expressing the rabbit ileal Na(+)/bile acid cotransporter allowing the generation of a pharmacophore using the CATALYST algorithm. After thorough conformational analysis of each molecule, CATALYST generated a pharmacophore model characterized by five chemical features: one hydrogen bond donor, one hydrogen bond acceptor, and three hydrophobic features. The 3D pharmacophore was enantiospecific and correctly estimated the activities of the members of the training set. The predicted interactions of natural bile acids with the pharmacophore model of the ileal Na(+)/bile acid cotransporter explain exactly the experimentally found structure;-activity relationships for the interaction of bile acids with the ileal Na(+)/bile acid cotransporter (Kramer et al. 1999. J. Lipid. Res. 40: 1604;-1617). The natural bile acid analogues cholyltaurine, chenodeoxycholyltaurine, or deoxycholyltaurine were able to map four of the five features of the pharmacophore model: a) the five-membered ring D and the methyl group at position 18 map one hydrophobic site and the 21-methyl group of the side chain maps a second hydrophobic site; b) one of the alpha-oriented hydroxyl groups at position 7 or 12 fits the hydrogen bond donor feature; c) the negatively charged side chain acts as hydrogen bond acceptor; and d) the hydroxy group at position 3 does not specifically map any of the five binding features of the pharmacophore model. The 3-hydroxy group of natural bile acids is not essential for interactions with ileal or hepatic Na(+)/bile acid cotransporters. A modification of the 3-position of a natural bile acid molecule is therefore the preferred position for drug targeting strategies using bile acid transport pathways.  相似文献   

15.
Inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) enzyme are useful for the treatment of various diseases including cancer. Comparative in silico studies were performed on different ligand-based (2D-QSAR, Kernel-based partial least square (KPLS) analysis, Pharmacophore Search Engine (PHASE) pharmacophore mapping), and structure-based (molecular docking, MM-GBSA analyses, Gaussian-based 3D-QSAR analyses on docked poses) modeling techniques to explore the structure–activity relationship of a diverse set of PARP-1 inhibitors. Two-dimensional (2D)-QSAR highlighted the importance of charge topological index (JGI7), fractional polar surface area (JursFPSA3), and connectivity index (CIC2) along with different molecular fragments. Favorable and unfavorable fingerprints were demonstrated in KPLS analysis, whereas important pharmacophore features (one acceptor, one donor, and two ring aromatic) along with favorable and unfavorable field effects were demonstrated in PHASE-based pharmacophore model. MM-GBSA analyses revealed significance of different polar, non-polar, and solvation energies. Docking-based alignment of ligands was used to perform Gaussian-based 3D-QSAR study that further demonstrated importance of different field effects. Overall, it was found that polar interactions (hydrogen bonding, bridged hydrogen bonding, and pi–cation) play major roles for higher activity. Steric groups increase the total contact surface area but it should have higher fractional polar surface area to adjust solvation energy. Structure-based pharmacophore mapping spotted the positive ionizable feature of ligands as the most important feature for discriminating highly active compounds from inactives. Molecular dynamics simulation, conducted on highly active ligands, described the dynamic behaviors of the protein complexes and supported the interpretations obtained from other modeling analyses. The current study may be useful for designing PARP-1 inhibitors.  相似文献   

16.
A three-dimensional pharmacophore model was developed based on 25 currently available inhibitors, which were carefully selected with great diversity in both molecular structure and bioactivity as required by HypoGen program in the Catalyst software, for discovering new farnesyltransferase (FTase) inhibitors. The best hypothesis (Hypo1), consisting of four features, namely, two hydrogen-bond acceptors, one hydrophobic point, and one ring aromatic feature, has a correlation coefficient of 0.949, a root-mean-square deviation of 1.321, and a cost difference of 163.15, suggesting that a highly predictive pharmacophore model was successfully obtained. The application of the model shows great success in predicting the activities of 227 known FTase inhibitors in our test set with a correlation coefficient of 0.776 with a cross-validation of 98% confidence level. Accordingly, our model should be reliable in identifying structurally diverse compounds with desired biological activity.  相似文献   

17.
The scientific advances during the 1970ies and 1980ies within the field of dopaminergic neurotransmission enabled the development of a pharmacophore that became the template for design and synthesis of dopamine D2 agonists during the following four decades. A major drawback, however, is that this model fails to accommodate certain classes of restrained dopamine D2 agonists including ergoline structures. To accommodate these, a revision of the original model was required. The present study has addressed this by an extension of the original model without compromising its obvious qualities. The revised pharmacophore contains an additional hydrogen bond donor feature, which is required for it to accommodate ergoline structures in a low energy conformation and in accordance with the steric restrictions dictated by the original model. The additional pharmacophore feature suggests ambiguity in the binding mode for certain compounds, including a series of ergoline analogues, which was reported recently. The ambiguity was confirmed by docking to a homology model of the D2 receptor as well as by pharmacological characterization of individual enantiomers of one of the analogues. The present research also addresses the potential of designing ligands that interact with the receptor in a large, distal cavity of the dopamine D2 receptor that has not previously been studied systematically. The pharmacological data indicate that this area may be a major determinant for both the dopamine D2 affinity and efficacy, which remains to be explored in future studies.  相似文献   

18.
The refinement of our original five point pharmacophore model for the H3 receptor with the addition of a new acceptor feature is presented. The importance of this new acceptor feature for the binding and the selectivity against H1, H2 and H4 has been validated using a newly synthesized naphthalene series. With the SAR deduced from several hundred naphthalene derivatives in various sub-classes the specific role of each pharmacophoric feature, by varying the geometry, size and charge of the molecules, was elucidated. This led to the discovery of a highly potent and selective new compounds series.  相似文献   

19.
In this study, chemical feature based pharmacophore models of MMP-1, MMP-8 and MMP-13 inhibitors have been developed with the aid of HypoGen module within Catalyst program package. In MMP-1 and MMP-13, all the compounds in the training set mapped HBA and RA, while in MMP-8, the training set mapped HBA and HY. These features revealed responsibility for the high molecular bioactivity, and this is further used as a three dimensional query to screen the knowledge based designed molecules. These pharmacophore models for collagenases picked up some potent and novel inhibitors. Subsequently, docking studies were performed for the potent molecules and novel hits were suggested for further studies based on the docking score and active site interactions in MMP-1, MMP-8 and MMP-13.  相似文献   

20.
Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to N-methyl pyrimidones as HIV-1 integrase inhibitors. Based on the ligand-based pharmacophore model, we got 5-point pharmacophore model AADDR, with two hydrogen bond acceptors (A), two hydrogen bond donors (D) and one aromatic ring (R). The generated pharmacophore-based alignment was used to derive a predictive atom-based 3D-QSAR model for the training set (r2?=?0.92, SD?=?0.16, F?=?84.8, N?=?40) and for test set (Q2?=?0.71, RMSE?=?0.06, Pearson R?=?0.90, N?=?10). From these results, AADDR pharmacophore feature was selected as best common pharmacophore hypothesis, and atom-based 3D-QSAR results also support the outcome by means of favourable and unfavourable regions of hydrophobic and electron-withdrawing groups for the most potent compound 30. These results can be useful for further design of new and potent HIV-1 IN inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号