首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. Repression occurs through binding of two MepR dimers to an operator with two homologous and closely approximated pseudopalindromic binding sites (site 1 [S1] and site 2 [S2]). MepR binding is impeded in the presence of pentamidine, a MepA substrate. The effects of various mepA operator mutations on MepR binding were determined using electrophoretic mobility shift assays and isothermal titration calorimetry, and an in vivo confirmation of the effects observed was established for a fully palindromic operator mutant. Altering the S1-S2 spacing by 1 to 4 bp severely impaired S2 binding, likely due to a physical collision between adjacent MepR dimers. Extension of the spacing to 9 bp eliminated the S1 binding-mediated DNA allostery required for efficient S2 binding, consistent with positive cooperative binding of MepR dimers. Binding of a single dimer to S1 was maintained when S2 was disrupted, whereas disruption of S1 eliminated any significant binding to S2, also consistent with positive cooperativity. Palindromization of binding sites, especially S2, enhanced MepR affinity for the mepA operator and reduced MepA substrate-mediated MepR induction. As a result, the on-off equilibrium between MepR and its binding sites was shifted toward the on state, resulting in less free MepR being available for interaction with inducing ligand. The selective pressure(s) under which mepA expression is advantageous likely contributed to the accumulation of mutations in the mepA operator, resulting in the current sequence from which MepR is readily induced by MepA substrates.  相似文献   

2.
Resistance to intercalating dyes (ethidium, acriflavine) and other organic cations, such as quaternary ammonium-type antiseptic compounds, mediated by the Staphylococcus aureus plasmid pSK1 is specified by an energy-dependent export mechanism encoded by the qacA gene. From nucleotide sequence analysis, qacA is predicted to encode a protein of Mr 55017 containing 514 amino acids. The gene is likely to initiate with a CUG codon, and a 36 bp palindrome immediately preceding qacA, along with an upstream reading frame with homology to the TetR repressors, may be components of a regulatory circuit. The putative polypeptide specified by qacA has properties typical of a cytoplasmic membrane protein, and is indicated to be a member of a transport protein family that includes proteins responsible for export-mediated resistance to tetracycline and methylenomycin, and uptake of sugars and quinate. The analysis suggests that N- and C-terminal regions of these proteins are involved in energy coupling (proton translocation) and substrate transport, respectively. The last common ancestor of the qacA and related tet (tetracycline resistance) lineages is inferred to have been repressor controlled, as occurs for modern tet determinants from Gram-negative, but not those from Gram-positive, bacteria.  相似文献   

3.
Recognized since 1883 as a common cause of infection, Staphylococcus aureus' preantimicrobial-era bacteremia mortality rate was 82%. The mortality of that era threatens to return as evidence of growing vancomycin resistance undermines the utility of vancomycin therapy. Successful treatment of S. aureus infections requires knowledge of its antimicrobial resistance capacity.  相似文献   

4.
MepA is a multidrug and toxin extrusion (MATE) family protein and the only MATE protein encoded within the Staphylococcus aureus genome. Structural data for MATE proteins are limited to a single high-resolution example, NorM of Vibrio cholerae. Substitution mutations were created in MepA using gradient plates containing both a substrate and reserpine as an efflux pump inhibitor. Site-directed mutagenesis of plasmid-based mepA was used to reproduce these mutations, as well as unique or low-frequency mutations identified in mepA-overexpressing clinical strains, and to mutagenize conserved acidic residues. The effect of these changes on protein function was quantitated in a norA-disrupted host strain by susceptibility testing with and without inhibitors and by determining the proficiency of ethidium efflux. Up-function substitutions clustered in the carboxy half of MepA, near the cytoplasmic face of the protein. Repeated application of the same gradient plate conditions frequently reproduced identical substitution mutations, suggesting that individual residues are required for interaction with specific substrates. Acidic residues critical to protein function were identified in helices 4 and 5. In silico modeling revealed an outward-facing molecule, with helices 1, 2, 4, 7, 8, and 10 having contact with a central cavity that may represent a substrate translocation pathway. Functionally important residues within this cavity included S81, A161, M291, and A302. These data provide a critical starting point for understanding how MATE multidrug efflux proteins function and will be useful in refining crystallographic data when they are available.  相似文献   

5.
Bacitracin sensing and resistance in Staphylococcus aureus   总被引:1,自引:0,他引:1  
Bacterial two-component systems (TCSs) have been demonstrated to be associated with not only the expression of virulence factors, but also the susceptibility to antibacterial agents. In Staphylococcus aureus, 16 types of TCSs have been identified. We previously found that the inactivation of one uncharacterized TCS (designated as BceRS, MW gene ID: MW2545-2544) resulted in an increase in susceptibility to bacitracin. In this study, we focused on this TCS and tried to identify the TCS-controlled factors affecting the susceptibility to bacitracin. We found that two ABC transporters were associated with the susceptibility to bacitracin. One transporter designated as BceAB (MW2543-2542) is downstream of this TCS, while another (formerly designated as VraDE: MW2620-2621) is separate from this TCS. Both transporters showed homology with several bacitracin-resistance factors in Gram-positive bacteria. Inactivation of each of these two transporters increased the susceptibility to bacitracin. Expressions of these transporters were significantly increased by the addition of bacitracin, while this induction was not observed in the TCS-inactivated mutant. These results indicate that this TCS senses bacitracin, and also positively regulates the expression of two ABC transporters.  相似文献   

6.
Lead resistance and sensitivity in Staphylococcus aureus   总被引:1,自引:0,他引:1  
Abstract Five lead-resistant strains of Staphylococcus aureus were isolated. Plasmid-free lead-sensitive variants were obtained from the three plasmid-bearing strains. Lead-resistant strains tolerated an approximately 600 × higher Pb(NO3)2 concentration than lead-sensitive strains. Both types of strains initially bound lead, but only the resistant strains accumulated the metal as an intracellular lead-phosphate.  相似文献   

7.
Staphylococcus aureus is a major human pathogen of increasing importance as a result of the spread of antibiotic resistance. It causes a wide range of diseases and survives outside the host by virtue of its adaptability and resistance to environmental stress. Several cellular components involved in Staphylococcus aureus stress resistance have begun to be characterized.  相似文献   

8.
A multiply resistant Staphylococcus aureus isolate, WBG7410, harbours plasmids of 38, 26, 2.8, 2.4 and 1.9 kb and transfers trimethoprim and kanamycin resistance at high frequencies by conjugation. The transconjugants contained the 38-kb plasmid, pWBG707, and the 2.8-kb plasmid. Plasmid pWBG707 was shown to encode trimethoprim resistance, was conjugative and mobilised at high frequencies the 2.8-kb plasmid which presumably encodes kanamycin resistance. Plasmid pWBG707 was isolated mostly in the open circular form and analysis with EcoRI restriction endonuclease suggests that pWBG707 is a new conjugative plasmid distinct from the other conjugative plasmids reported in S. aureus.  相似文献   

9.
Plasmid-determined bleomycin resistance in Staphylococcus aureus   总被引:6,自引:0,他引:6  
A 1580-bp fragment of Staphylococcus aureus plasmid pUB110 encoding resistance to the DNA synthesis inhibitor bleomycin has been cloned and sequenced. A DNA sequence containing an open reading frame of 405 bp was subcloned into several expression vectors and bleomycin resistance was expressed at high level in Escherichia coli under the control of lambda PL promoter. On induction, a ca. 14,000-Da protein was detected by gel electrophoresis. The bleomycin resistance determinant of the gram-positive plasmid pUB110 was compared to that of the enterobacterial transposon Tn5; limited regions of close relatedness could be identified.  相似文献   

10.
Novel classes of antimicrobials are needed to address the emergence of multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA). We have recently identified pyruvate kinase (PK) as a potential novel drug target based upon it being an essential hub in the MRSA interactome (Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., McMaster, W. R., Brunham, R. C., Finlay, B. B., and Reiner, N. E. (2011) J. Proteome Res. 10, 1139-1150; Zoraghi, R., See, R. H., Axerio-Cilies, P., Kumar, N. S., Gong, H., Moreau, A., Hsing, M., Kaur, S., Swayze, R. D., Worrall, L., Amandoron, E., Lian, T., Jackson, L., Jiang, J., Thorson, L., Labriere, C., Foster, L., Brunham, R. C., McMaster, W. R., Finlay, B. B., Strynadka, N. C., Cherkasov, A., Young, R. N., and Reiner, N. E. (2011) Antimicrob. Agents Chemother. 55, 2042-2053). Screening of an extract library of marine invertebrates against MRSA PK resulted in the identification of bis-indole alkaloids of the spongotine (A), topsentin (B, D), and hamacanthin (C) classes isolated from the Topsentia pachastrelloides as novel bacterial PK inhibitors. These compounds potently and selectively inhibited both MRSA PK enzymatic activity and S. aureus growth in vitro. The most active compounds, cis-3,4-dihyrohyrohamacanthin B (C) and bromodeoxytopsentin (D), were identified as highly potent MRSA PK inhibitors (IC(50) values of 16-60 nM) with at least 166-fold selectivity over human PK isoforms. These novel anti-PK natural compounds exhibited significant antibacterial activities against S. aureus, including MRSA (minimal inhibitory concentrations (MIC) of 12.5 and 6.25 μg/ml, respectively) with selectivity indices (CC(50)/MIC) >4. We also report the discrete structural features of the MRSA PK tetramer as determined by x-ray crystallography, which is suitable for selective targeting of the bacterial enzyme. The co-crystal structure of compound C with MRSA PK confirms that the latter is a target for bis-indole alkaloids. It elucidates the essential structural requirements for PK inhibitors in "small" interfaces that provide for tetramer rigidity and efficient catalytic activity. Our results identified a series of natural products as novel MRSA PK inhibitors, providing the basis for further development of potential novel antimicrobials.  相似文献   

11.
12.
At least two functionally different types of ribosomes are found in strains of Staphylococcus aureus which display "dissociated" resistance to erythromycin. One type of ribosome is found under conditions of growth in ordinary nutrient broth, and the second is formed during growth in the presence of erythromycin. In these strains, erythromycin acts as an inducer of resistance to three different classes of inhibitors of the 50S ribosomal subunit-the macrolides, lincosamides, and streptogramin B-type antibiotics. The optimal inducing concentration of erythromycin is between 10(-8) and 10(-7)m. Concentrations as low as 10(-9)m can produce a 10-fold increase in resistant cells over the uninduced, background level, whereas concentrations greater than 10(-7)m block induction owing to inhibition of protein synthesis. Resistant cells begin to appear within 5 to 10 min after addition of erythromycin (to 10(-7)m), and within 40 min (i.e., about one generation) more than 90% of the entire culture is resistant to erythromycin as well as to lincomycin and vernamycin B(alpha). A resistant culture becomes sensitive if grown for 90 min in the absence of erythromycin. The process of induction is inhibited by chloramphenicol and streptovaricin, which inhibit protein and ribonucleic acid synthesis, respectively, but not by novobiocin, which inhibits deoxyribonucleic acid synthesis. Resistant cells produced in this manner fail to concentrate (14)C-erythromycin and (14)C-lincomycin, but not (14)C-chloramphenicol. Constitutively erythromycin-resistant strains which do not require the presence of erythromycin for expression of resistance can be selected on media containing antibiotics which belong to any one of the three classes. Two patterns of constitutive resistance have been found. These are (i) generalized constitutive resistance-which involves resistance in the absence of erythromycin to all members of each of the three cited classes of 50S subunit inhibitors which were tested, and (ii) partial constitutive resistance-which involves different degrees of resistance, in the absence of erythromycin, to various members of the three classes. Several different patterns of variable constitutivity are possible. 50S ribosomal subunits isolated from induced or constitutively resistant cells show decreased ability to bind erythromycin and lincomycin, and possible enzymatic inactivation of these antibiotics has been rigorously excluded. The induced change, therefore involves modification of ribosome structure rather than modification of the antibiotic.  相似文献   

13.
14.
15.
16.
Mechanisms of antibiotic resistance in Staphylococcus aureus   总被引:1,自引:0,他引:1  
G Renzini  M E Salvetti 《Antibiotica》1974,12(3-4):134-158
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号