首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
For the purpose of discovering novel type-II inhibitors of vascular endothelial growth factor receptor 2 (VEGFR2) kinase, we designed and synthesized 5,6-fused heterocyclic compounds bearing a anilide group. A co-crystal structure analysis of imidazo[1,2-b]pyridazine derivative 2 with VEGFR2 revealed that the N1-nitrogen of imidazo[1,2-b]pyridazine core interacts with the backbone NH group of Cys919. To retain this essential interaction, we designed a series of imidazo[1,2-a]pyridine, [1,2,4]triazolo[1,5-a]pyridine, thiazolo[5,4-b]pyridine, and 1,3-benzothiazole derivatives maintaining a ring nitrogen as hydrogen bond acceptor (HBA) at the corresponding position. All compounds thus designed displayed strong inhibitory activity against VEGFR2 kinase, and the [1,2,4]triazolo[1,5-a]pyridine 13d displayed favorable physicochemical properties. Furthermore, 13d inhibited VEGFR2 kinase with slow dissociation kinetics and also inhibited platelet-derived growth factor receptor (PDGFR) kinases. Oral administration of 13d showed potent anti-tumor efficacy in DU145 and A549 xenograft models in nude mice.  相似文献   

2.
A structure–activity relationship study for a 2-chloroanilide derivative of pyrazolo[1,5-a]pyridine revealed that increased EphB3 kinase inhibitory activity could be accomplished by retaining the 2-chloroanilide and introducing a phenyl or small electron donating substituents to the 5-position of the pyrazolo[1,5-a]pyridine. In addition, replacement of the pyrazolo[1,5-a]pyridine with imidazo[1,2-a]pyridine was well tolerated and resulted in enhanced mouse liver microsome stability. The structure–activity relationship for EphB3 inhibition of both heterocyclic series was similar. Kinase inhibitory activity was also demonstrated for representative analogs in cell culture. An analog (32, LDN-211904) was also profiled for inhibitory activity against a panel of 288 kinases and found to be quite selective for tyrosine kinases. Overall, these studies provide useful molecular probes for examining the in vitro, cellular and potentially in vivo kinase-dependent function of EphB3 receptor.  相似文献   

3.
Pyrazolo[1,5-a]-1,3,5-triazine myoseverin derivatives 1a–c were prepared from 4-(N-methyl-N-phenylamino)-2-methylsulfanylpyrazolo[1,5-a]-1,3,5-triazine 2. Their cytotoxic activity, inhibition of tubulin polymerization, and cell cycle effects were evaluated. Compounds 1a and 1c are potent tubulin inhibitors and displayed specific antiproliferative activity in colorectal cancer cell lines at micromolar concentrations.  相似文献   

4.
The key intermediate 3-aminopyrazolo[4,3-c]pyridine-4,6-dione (2) is considered as a precursor for some novel pyrazolo[4,3-c]pyridines 4a-c, arylhydrazopyrazolo[4,3-c]pyridines 8a-e, pyrazolo[4,5,1-ij][1,6]naphthyridines 11a-e and pyrido[4′,3′:3,4]pyrazolo[1,5-a]-pyrimidines 15a-d through Knovenegal condensation, coupling reaction and Michael addition. Some of the newly synthesized pyrazolo[4,3-c]pyridine derivatives were investigated for anticancer activity. The results of the cytotoxic activity revealed that compound 6b was the most active compound against the breast and liver carcinoma cell lines which gives IC50 values of 1.937 and 3.695 µg/mL, respectively compared to reference drug (doxorubicin) with IC50 values of 2.527 and 4.749 µg/ml, respectively. Moreover, compound 6c was potent compound against the colon carcinoma cell line which gives the value of IC50 = 2.914 µg/ml compared to doxorubicin with IC50 value of 3.641 µg/ml. Some selected of the novel synthesized compounds were docked inside the active site of ERK2 enzyme and were found display a suitable binding with the active site amino acids according to their bond lengths, angles and conformational energy.  相似文献   

5.
A series of platinum(II) complexes with 6,8-dimethylimidazo[1,5-a]-1,3,5-triazin-4(3H)-one (6,8-DiMe-4-O-IMT) (I) and 6,8-dimethyl-2-thioxo-2,3-dihydroimidazo[1,5-a]-1,3,5-triazin-4(1H)-one (6,8-DiMe-4-O-2-S-IMT) (II) of formula trans-[PtCl2(dmso)(6,8-DiMe-4-O-IMT)] (1a) and trans-[PtCl2(dmso)(6,8-DiMe-4-O-2-S-IMT)] (2a) have been prepared and characterized with 1H, 13C, 15N, 195Pt NMR and IR. Significant 15N NMR upfield coordination shifts (81-96 ppm) of N(7) atom indicate this nitrogen atom as a coordination site. The multinuclear NMR and IR spectra indicate the square planar geometry with N(7) bonded heterocycles, S-bonded dimethylsulfoxide and two trans chloride anions. The platinum(II) complexes were tested for their antiproliferative activity in vitro against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The activity of (1a, 2a) was lower than that of cisplatin.  相似文献   

6.
We previously identified KCA-1490 [(?)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model.  相似文献   

7.
The synthesis and SAR of a series of 6-chloro-4-fluoroalkylamino-2-heteroaryl-5-(substituted)phenylpyrimidines as anti-cancer agents are described. This series of 2-heteroarylpyrimidines was developed by modifying a series of anti-tumor [1,2,4]triazolo[1,5-a]pyrimidines and 2-cyanoaminopyrimidines we reported earlier. For the 2-heteroaryl group, the best activity is obtained when the heteroaryl group has a nitrogen atom at the ortho-position to the pyrimidyl core. The structure–activity relationship for the rest of the molecule in this 2-heteroarylpyrimidine series mimics that of the [1,2,4]triazolo[1,5-a]pyrimidine series. Like triazolopyrimidines and 2-cyanoaminopyrimidines, the 2-heteroarylpyrimidines retain the capability to overcome multidrug resistance due to Pgp. Mechanism of action studies showed that the lead compounds behaved in the same manner as triazolopyrimidines and 2-cyanoaminopyrimidines. The lead compounds in this series are more potent than the corresponding triazolopyrimidines in vitro and in vivo. Compound 21 (PTI-868) showed tumor growth inhibition in several nude mouse xenograft models, and was selected to advance to preclinical development.  相似文献   

8.
A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC’s of 0.1 μM and 1.3 μM) and were inactive (MIC >128 μM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 μM, respectively), Mycobacterium kansasii (4 and 19 μM, respectively), Mycobacterium bovis BCG (1 and 8 μM, respectively) while all the other scaffolds were inactive (>128 μM).  相似文献   

9.
Synthesis of several pyrazolo[1,5-c]pyrimidines, pyrazolo[1,5-a]pyrimidines and pyrazolo[1,5-a][1,3,5]triazines with potent activity against herpes simplex viruses is described. Synthetic approaches allowing for variation of the substitution pattern are outlined and resulting changes in antiviral activity are highlighted. Several compounds with in vitro antiviral activity similar or better than acyclovir are described.  相似文献   

10.
Benz[b]oxepines 4ag and 12-oxobenzo[c]phenanthridines 5ad were designed and synthesized as constrained forms of 3-arylisoquinolines through an intramolecular radical cyclization reaction. Radical cyclization of O-vinyl compounds preferentially led to the 7-endo-trig cyclization pathway to the benz[b]oxepines and 12-oxobenzo[c]phenanthridines through 6-exo-trig path as minor products. Among the synthesized compounds, benz[b]oxepine derivative 4e exhibited potent in vitro cytotoxicity against three different tumor cell lines, as well as topoisomerase 1 inhibitory activity. A Surflex–Dock docking study was performed to clarify the topoisomerase 1 activity of 4e.  相似文献   

11.
A number of 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines were prepared and their 5-HT6 receptor binding affinity and ability to inhibit the functional cellular responses to serotonin were evaluated. 3-[(3-Chlorophenyl)sulfonyl]-N-(tetrahydrofuran-2-ylmethyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{5,26} appeared to be the most active in a functional assay (IC50 = 29.0 nM) and 3-(phenylsulfonyl)-N-(2-thienylmethyl) thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidin-5-amine 2{1,28} demonstrated the greatest affinity in a 5-HT6 receptor radioligand binding assay (Ki = 1.7 nM). A screening of 5-HT2A and 5-HT2B receptor affinity revealed that 3-(phenylsulfonyl)thieno[2,3-e][1,2,3]triazolo[1,5-a]pyrimidines are highly selective 5-HT6 receptor ligands.  相似文献   

12.
The initial focus on characterizing novel pyrazolo[1,5-a]pyrimidin-7(4H)-one derivatives as DPP-4 inhibitors, led to a potent and selective inhibitor compound b2. This ligand exhibits potent in vitro DPP-4 inhibitory activity (IC50: 80?nM), while maintaining other key cellular parameters such as high selectivity, low cytotoxicity and good cell viability. Subsequent optimization of b2 based on docking analysis and structure-based drug design knowledge resulted in d1. Compound d1 has nearly 2-fold increase of inhibitory activity (IC50: 49?nM) and over 1000-fold selectivity against DPP-8 and DPP-9. Further in vivo IPGTT assays showed that compound b2 effectively reduce glucose excursion by 34% at the dose of 10?mg/kg in diabetic mice. Herein we report the optimization and design of a potent and highly selective series of pyrazolo[1,5-a]pyrimidin-7(4H)-one DPP-4 inhibitors.  相似文献   

13.
A series of ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates were prepared through the metal-catalyzed domino reaction of alkylidene malonates and 1,4-butynediol under a one-pot reaction condition at room temperature. Their in vitro anti-proliferative activities were subsequently evaluated in A549, QGY and HeLa cells. The majority of the compounds showed potent anti-tumor activity against HeLa cells. In particular, compound 3l was the most potent compound with IC50 value of 5.4 μM. For the first time, the X-ray structure of the anti-tumor ethyl 3-aryl-4-oxo-3,3a,4,6-tetrahydro-1H-furo[3,4-c]pyran-3a-carboxylates is determined.  相似文献   

14.
A hit-to-lead optimisation programme was carried out on the Novartis archive screening hit, pyrazolopyrimidine 2-methyl-5-((phenylthio)methyl)pyrazolo[1,5-a]pyrimidin-7-ol 1, resulting in the discovery of CXCR2 receptor antagonist 2-benzyl-5-(((2,3-difluorophenyl)thio)methyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7-ol 14. The SAR was investigated by systematic variation of the pendant thiol, alkyl and pyrimidinol groups. Replacement of the pyrazolopyrimidine core with a triazolo alternative led to a dual series of antagonists with favourable biological and pharmacokinetic properties.  相似文献   

15.
Series of 2-exo-aryl-1,4-epoxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 3ak and cis-2-aryl-4-hydroxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 4aj were synthesized and evaluated against free and intracellular live forms of Trypanosoma cruzi and Leishmania chagasi parasites using in vitro assays. Cell toxicity was also analyzed on Vero and THP-1 mammalian cell lines. The compounds 3c, 3f, and 4d were the most active against both live forms of T. cruzi parasites with low mammalian cell toxicity. Some compounds were active on free live forms of L. chagasi parasites but none was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

16.
New indole-tethered [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one (8a-j) and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) were synthesized using [4+2] cycloaddition reactions of functionalized 1,3-diazabuta-1,3-dienes with indole-ketenes. All molecular hybrids were structurally characterized by spectroscopic techniques (IR, NMR, and HRMS) and screened for their anti-pancreatic cancer activity in vitro. The [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids (9a-e) showed stronger anti-pancreatic cancer activity than the [1,3,4]thiadiazolo[3,2-a]pyrimidin-5-one hybrids (8a-j) against the PANC-1 cell line. Compound 9d bearing an ortho-chlorophenyl moiety emerged as the most potent anti-pancreatic cancer agent with an IC50 value of 7.7 ± 0.4 µM, much superior to the standard drug Gemcitabine (IC50 > 500 µM). The discovery of these [1,3,4]thiadiazolo and [1,3,4]oxadiazolo[3,2-a]pyrimidin-5-one hybrids elicits their potentials as pursuable candidates for pancreatic cancer chemotherapy.  相似文献   

17.
As restricted CA-4 analogues, a novel series of [1,2,4]triazolo[1,5-a]pyrimidines possessing 3,4,5-trimethoxylphenyl groups has been achieved successfully via an efficient one-pot three-component reaction of 3-(3,4,5-trimethoxyphenyl)-1H-1,2,4-triazol-5-amine, 1,3-dicarbonyl compounds and aldehydes. Initial biological evaluation demonstrated some of target compounds displayed potent antitumor activity in vitro against three cancer cell lines. Among them, the most highly active analogue 26 inhibited the growth of HeLa, and A549 cell lines with IC50 values at 0.75, and 1.02 μM, respectively, indicating excellent selectivity over non-tumoural cell line HEK-293 (IC50 = 29.94 μM) which suggested that the target compounds might possess a high safety index. Moreover, cell cycle analysis illustrated that the analogue 26 significantly induced HeLa cells arrest in G2/M phase, meanwhile the compound could dramatically affect cell morphology and microtubule networks. In addition, compound 28 exhibited potent anti-tubulin activity with IC50 values of 9.90 μM, and molecular docking studies revealed the analogue occupied the colchicine-binding site of tubulin. These observations suggest that [1,2,4]triazolo[1,5-a]pyrimidines represent a new class of tubulin polymerization inhibitors and well worth further investigation aiming to generate potential anticancer agents.  相似文献   

18.
A series of phenylimidazole-pyrazolo[1,5-c]quinazolines 1a-q was designed, synthesized and characterised as a novel class of potent phophodiesterase 10A (PDE10A) inhibitors. In this series, 2,9-dimethyl-5-(2-(1-methyl-4-phenyl-1H-imidazol-2-yl)ethyl)pyrazolo[1,5-c]quinazoline (1q) showed the highest affinity for PDE10A enzyme (IC50 = 16 nM).  相似文献   

19.
Use of the tools of SBDD including crystallography led to the discovery of novel and potent 6,5 heterobicyclic MEKi’s [J. Med. Chem. 2012, 55, 4594]. The core change from a 5,6 heterobicycle to a 6,5 heterobicycle was driven by the desire for increased structural diversity and aided by the co-crystal structure of G-925 [J. Med. Chem. 2012, 55, 4594]. The key design feature was the shift of the attachment of the five-membered heterocyclic ring towards the B ring while maintaining the key hydroxamate and anilino pharamcophoric elements in a remarkably similar position as in G-925. From modelling, changing the connection point of the five membered ring heterocycle placed the H-bond accepting nitrogen within a good distance and angle to the Ser212 [J. Med. Chem. 2012, 55, 4594]. The resulting novel 6,5 benzoisothiazole MEKi G-155 exhibited improved potency versus aza-benzofurans G-925 and G-963 but was a potent inhibitor of cytochrome P450’s 2C9 and 2C19. Lowering the log D by switching to the more polar imidazo[1,5-a] pyridine core significantly diminished 2C9/2C19 inhibition while retaining potency. The imidazo[1,5-a] pyridine G-868 exhibited increased potency versus the starting point for this work (aza-benzofuran G-925) leading to deprioritization of the azabenzofurans. The 6,5-imidazo[1,5-a] pyridine scaffold was further diversified by incorporating a nitrogen at the 7 position to give the imidazo[1,5-a] pyrazine scaffold. The introduction of the C7 nitrogen was driven by the desire to improve metabolic stability by blocking metabolism at the C7 and C8 positions (particularly the HLM stability). It was found that improving on G-868 (later renamed GDC-0623) required combining C7 nitrogen with a diol hydroxamate to give G-479. G-479 with polarity distributed throughout the molecule was improved over G-868 in many aspects.  相似文献   

20.
We have developed a new class of PDE10A inhibitor, a pyrazolo[1,5-a]pyrimidine derivative MT-3014 (1). A previous compound introduced was deprioritized due to concerns for E/Z-isomerization and glutathione-adduct formation at the core stilbene structure. We discovered pyrazolo [1,5-a] pyrimidine as a new lead scaffold by structure-based drug design utilizing a co-crystal structure with PDE10A. The lead compound was optimized for in vitro activity, solubility, and selectivity against human ether-á-go-go related gene cardiac channel binding. We observed that MT-3014 shows excellent efficacy in rat conditioned avoidance response test and suitable pharmacokinetic properties in rats, especially high brain penetration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号