首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Lithium-ion (Li-ion) battery packs recovered from end-of-life electric vehicles (EV) present potential technological, economic and environmental opportunities for improving energy systems and material efficiency. Battery packs can be reused in stationary applications as part of a “smart grid”, for example to provide energy storage systems (ESS) for load leveling, residential or commercial power. Previous work on EV battery reuse has demonstrated technical viability and shown energy efficiency benefits in energy storage systems modeled under commercial scenarios. The current analysis performs a life cycle assessment (LCA) study on a Li-ion battery pack used in an EV and then reused in a stationary ESS.

Methods

A complex functional unit is used to combine energy delivered by the battery pack from the mobility function and the stationary ESS. Various scenarios of cascaded “EV mobility plus reuse in stationary clean electric power scenarios” are contrasted with “conventional system mobility with internal combustion engine vehicles plus natural gas peaking power.” Eight years are assumed for first use; with 10 years for reuse in the stationary application. Operational scenarios and environmental data are based on real time-of-day and time-of-year power use. Additional data from LCA databases are utilized. Ontario, Canada, is used as the geographic baseline; analysis includes sensitivity to the electricity mix and battery degradation. Seven environmental categories are assessed using ReCiPe.

Results and discussion

Results indicate that the manufacturing phase of the Li-ion battery will still dominate environmental impacts across the extended life cycle of the pack (first use in vehicle plus reuse in stationary application). For most impact categories, the cascaded use system appears significantly beneficial compared to the conventional system. By consuming clean energy sources for both use and reuse, global and local environmental stress reductions can be supported. Greenhouse gas advantages of vehicle electrification can be doubled by extending the life of the EV batteries, and enabling better use of off-peak low-cost clean electricity or intermittent renewable capacity. However, questions remain concerning implications of long-duration use of raw material resources employed before potential recycling.

Conclusions

Li-ion battery packs present opportunities for powering both mobility and stationary applications in the necessary transition to cleaner energy. Battery state-of-health is a considerable determinant in the life cycle performance of a Li-ion battery pack. The use of a complex functional unit was demonstrated in studying a component system with multiple uses in a cascaded application.
  相似文献   

2.
Purpose

Galvanized sheet is the most widely used coated steel plate globally in the industry of construction, automobile, electronics manufacturing, etc. Large amounts of resources and energy are used in galvanized sheet production, which likewise generates vast amounts of pollutant emissions. In the face of the rapid growth of the production and demand of galvanized sheet in China, it is very important to find out the key factors of the environment impact in the production of galvanized sheet. An evaluation of the environmental impact of galvanized sheet production in China was conducted by using the framework of life cycle assessment to improve resource saving and environmental protection in the galvanized sheet industry, and update the life cycle inventory database of galvanized sheet production.

Methods

The environmental impact assessment was carried out based on the life cycle assessment framework by the use of ReCiPe 2016 method which was applicable on a global scale to evaluate the environmental impact of galvanized sheet production. Methods of uncertainty analysis and sensitivity analysis were adopted to provide credible support.

Results and discussion

The midpoint categories of global warming and fossil resource scarcity, as well as the endpoint categories of human health contributed most to environmental burden, which were mainly caused by carbon dioxide emissions and coal consumption. Environmental impact was dominated by the key process of continuous casting billet production, followed by electrolytic zinc production and electricity generation.

Conclusions

Additional CO2-reducing measures should be implemented in galvanized sheet production to slow the effect of global warming. Moreover, biomass char reducing agents, rather than coal-based reducing agents, should be utilized in steelmaking to reduce fossil resource consumption. Furthermore, renewable energy, rather than coal-based electricity, should be used in galvanized sheet production to reduce carbon emissions and fossil resource consumption. Increasing the recycling rate of scrap steel and zinc waste can save resources and reduce environmental burden. The results of this study can provide guidance in the reduction of resource consumption and environmental burden of galvanized sheet production to the maximum extent.

  相似文献   

3.
Purpose

An estimation of the environmental impact of buildings by means of a life cycle assessment (LCA) raises uncertainty related to the parameters that are subject to major changes over longer time spans. The main aim of the present study is to evaluate the influence of modifications in the electricity mix and the production efficiency in the chosen reference year on the embodied impacts (i.e., greenhouse gas (GHG) emissions) of building materials and components and the possible impact of this on future refurbishment measures.

Methods

A new LCA methodological approach was developed and implemented that can have a significant impact on the way in which existing buildings are assessed at the end of their service lives. The electricity mixes of different reference years were collected and assessed, and the main datasets and sub-datasets were modified according to the predefined substitution criteria. The influence of the electricity-mix modification and production efficiency were illustrated on a selected existing reference building, built in 1970. The relative contribution of the electricity mix to the embodied impact of the production phase was calculated for four different electricity mixes, with this comprising the electricity mix from 1970, the current electricity mix and two possible future electricity-mix scenarios for 2050. The residual value of the building was also estimated.

Results and discussion

In the case presented, the relative share of the electricity mix GHG emission towards the total value was as high as 20% for separate building components. If this electricity mix is replaced with an electricity mix having greater environmental emissions, the relative contribution of the electricity mix to the total emissions can be even higher. When, by contrast, the modified electricity mix is almost decarbonized, the relative contribution to the total emissions may well be reduced to a point where it becomes negligible. The modification of the electricity mix can also influence the residual value of a building. In the observed case, the differences due to different electricity mixes were in the range of 10%.

Conclusions

It was found that those parameters that are subject to a major change during the reference service period of the building should be treated dynamically in order to obtain reliable results. Future research is foreseen to provide additional knowledge concerning the influence of dynamic parameters on both the use phase and the end-of-life phase of buildings, and these findings will also be important when planning future refurbishment measures.

  相似文献   

4.
Purpose

Awareness regarding carbon and water footprint has gained visibility, encouraging actions towards compliance with the main available standards by fruit producers. This study presents the carbon and water footprint of packed mango produced in Vale do São Francisco, the main irrigated valley in Brazil. It provides an approach to identify the critical processes and opportunities for improvements in the conventional crop system that may support producers in the task of developing future site-specific assessments.

Methods

This assessment followed ISO 14046 and ISO 14067 for water and carbon footprints, respectively, as well as specific requirements of product category rule (PCR) 013 for fruits and nuts and Publicly Available Specification (PAS) 2051-1 for horticulture products. Primary data was collected for nursery (seedling), land use change, crop production, and packaging, considering five exported mango varieties: Palmer, Keitt, Kent, Haden, and Tommy Atkins. The carbon footprint assessment was based on the impact category climate change, while water footprint encompassed the following categories: water scarcity, marine and freshwater eutrophication, human toxicity (carcinogenic and non-carcinogenic), and freshwater ecotoxicity. The footprint analysis was performed for 1 kg of packed mango.

Results and discussion

The three main processes responsible for both footprints were related to crop production: fertilizer and electricity production as well as mango cropping. Moving from Caatinga vegetation to mango orchards increased carbon storage but was not enough to offset the impact on climate change. For water footprint, it was observed that the total volume of applied irrigation water was already below technical requirements and cannot be reduced, the same occurring for nitrogen fertilization. Scenario analysis showed that the use of alternative electricity sources and the reuse of wastewater brought no major improvement in results. Furthermore, the choice of local or country level characterization factors for water scarcity changed results significantly. Discussions are made regarding (i) the relevance of mango footprints when compared to other irrigated fruits, (ii) possibilities for improving mango footprint performance, (iii) the need for updating product category rules for fruits, and (iv) the quality of provided inventories and results.

Conclusions

The comparison of mango footprints with previous studies of irrigated fruits showed that mango performance is similar or better than many irrigated fruits, cultivated all over the world. Moreover, footprints may be further reduced if mango orchards are established in previously deforested land or areas occupied with annual crops and if improvements are made in the irrigation and fertilization practices at each mango production stage.

  相似文献   

5.
王昶  魏美芹  姚海琳  左绿水 《生态学报》2016,36(22):7346-7353
废旧动力电池包中含有丰富的镍、钴、稀土等稀贵金属,其资源化利用是实现混合动力汽车(Hybrid Electrical Vehicle,简称HEV)全生命周期绿色化管理的重要内容之一。随着HEV的不断发展,动力电池包在未来几年将逐渐进入批量报废阶段,其资源化利用的环境效益成为值得关注的问题。鉴于此,以丰田混合动力汽车镍氢电池包为研究对象,利用GREET模型和LIME值法测算出,相比于原生矿开采,单位废旧镍氢电池包中稀贵金属资源化利用所产生的环境效益为1083元;根据报废周期,对我国市场上现存的HEV镍氢电池包的未来报废情况进行预测。结果表明,这些电池包将从2018年开始迎来报废,在2021年达到报废高峰,至2024年基本完成报废;预计其稀贵金属资源化利用的环境效益,可累计达9421万元。提出了加强废旧动力电池回收体系和资源化利用体系建设的政策建议。  相似文献   

6.
Purpose

China is currently facing water scarcity due to its large national population and rapid economic development. Lead is a typical non-ferrous metal. The lead industry is one of the top 10 water-consuming industries in China and suffers from the heavy burden of properly managing discharged wastewater containing heavy metals and organic pollutants. Accordingly, a water footprint analysis of lead refining was conducted in this study to enhance the water management in China’s lead industry. This study is part 2 of the environmental improvement for lead-refining series.

Methods

In accordance with the ISO 14046 standard, life cycle assessment-based water footprint analysis was applied to a lead-refining enterprise in Jiangxi Province, China. Five midpoint (i.e., water scarcity, aquatic eutrophication, carcinogens, non-carcinogens, and freshwater ecotoxicity) and two endpoint (i.e., human health and ecosystem quality) indicators are utilized to assess the water footprint impact results.

Results and discussion

Direct pollutant emissions are a major contributor to ecosystem quality and freshwater ecotoxicity, whereas indirect processes (i.e., industrial hazardous waste landfill, transport, and chemicals) contribute considerably to human health, aquatic eutrophication, and carcinogen categories. Chromium, copper, arsenic, and zinc were the key substances in the lead production chain, and their emissions exerted a significant impact on human health and ecosystem quality.

Conclusions

Reducing direct copper emission was the most important key to minimizing ecosystem quality decline in China’s lead industry, and optimizing indirect processes was effective in mitigating the impact on human health. Enhancing wastewater treatment, increasing chemical consumption efficiency, optimizing transport and industrial hazardous waste disposal, improving supervision, issuing relevant governmental regulations, and adopting advanced wastewater treatment technologies are urgently needed to control the water footprint.

  相似文献   

7.
Purpose

The building sector is one of the most relevant sectors in terms of environmental impact. Different functional units (FUs) can be used in life cycle assessment (LCA) studies for a variety of purposes. This paper aimed to present different FUs used in the LCA of buildings and evaluate the influence of FU choice and setting in comparative studies.

Methods

As an example, we compared the “cradle to grave” environmental performance of four typical Brazilian residential buildings with different construction typologies, i.e., multi-dwelling and single dwelling, each with high and basic standards. We chose three types of FU for comparison: a dwelling with defined lifetime and occupancy parameters, an area of 1 m2 of dwelling over a year period, and the accommodation of an occupant person of the dwelling over a day.

Results and discussion

The FU choice was found to bias the results considerably. As expected, the largest global warming indicator (GWi) values per dwelling unit and occupant were identified for the high standard dwellings. However, when measured per square meter, lower standard dwellings presented the largest GWi values. This was caused by the greater concentration of people per square meter in smaller area dwellings, resulting in larger water and energy consumption per square meter. The sensitivity analysis of FU variables such as lifetime and occupancy showed the GWi contribution of the infrastructure more relevant compared with the operation in high and basic standard dwellings. The definition of lifetime and occupancy parameters is key to avoid bias and to reduce uncertainty of the results when performing a comparison of dwelling environmental performances.

Conclusions

This paper highlights the need for adequate choice and setting of FU to support intended decision-making in LCA studies of the building sector. The use of at least two FUs presented a broader picture of building performance, helping to guide effective environmental optimization efforts from different approaches and levels of analysis. Information regarding space, time, and service dimensions should be either included in the FU setting or provided in the building LCA study to allow adjustment of the results for subsequent comparison.

  相似文献   

8.
ABSTRACT

A variety of structural parameters were measured from wolf choruses recorded in the Superior National Forest, Minnesota, USA. Mean duration of 60s did not vary with pack size or composition. Packs replied to simulated howling after an average of 40s, often interrupting the stimulus howls. Choruses began with simply-structured howls, which became increasingly modulated as the chorus progressed. Little difference in mean fundamental frequency or other howl parameters was found among the choruses from packs of various sizes and compositions. In particular, choruses produced by single adult pairs did not differ from those of larger packs accompanied by pups. The lack of relationship between chorus parameters and pack size or composition indicates there is little useful information concerning a pack's size to be found in its chorus howling.

The observation that chorus howling by adult pairs is often perceived as that of larger groups with pups suggests that chorus structure has evolved to exaggerate the apparent size of the pack, especially those newly-established or otherwise reduced in number. If so, wolf howling choruses may represent a mammalian example of the Beau Geste effect, made particularly viable because of the relative immunity of the signal to probing.  相似文献   

9.
Purpose

An indicator of nutrient use efficiency through the entire food chain has been lacking. This article proposes a nutrient footprint method to estimate the efficiency of using both nitrogen (N) and phosphorus (P) in animal production chains following Life Cycle Assessment (LCA).

Methods

Following the nutrient footprint method of Grönman et al. (2016), we applied the nutrient footprint method to the Finnish beef production and consumption chain. We defined N and P flows associated with the beef chain from a product-specific point of view. The nutrient footprint is a resource efficiency indicator which combines the amount of nutrients captured for use in the production and consumption chain and their nutrient use efficiency (NutUE) either in the primary product or in both the primary + secondary products.

Results and discussion

Each 1000 kg of Finnish beef consumed requires 1700 kg N and 189 kg P during its life cycle. The percentage of virgin nutrient is more than 50% for N, but only 25% for P. NutUE in the primary product and in both primary + secondary products for N is 1% and 47% and for P is 0.2% and 74%, respectively.

Conclusions

The nutrient footprint offers information about NutUE in a simple and comparable form. In transition towards systems with sustainable nutrient use, it is essential to identify hot spots of nutrient leakage to be able to close them and improve food chains.

  相似文献   

10.
Purpose

Changes in the production of Australian cotton lint are expected to have a direct environmental impact, as well as indirect impacts related to co-product substitution and induced changes in crop production. The environmental consequences of a 50% expansion or contraction in production were compared to Australian cotton production’s current environmental footprint. Both were then assessed to investigate whether current impacts are suitable for predicting the environmental impact of a change in demand for cotton lint.

Methods

A consequential life cycle assessment (LCA) model of Australian cotton lint production (cradle-to-gin gate) was developed using plausible scenarios regarding domestic regions and technologies affected by changes in supply, with both expansion (additional cotton) and contraction (less cotton) being modelled. Modelling accounted for direct impacts from cotton production and indirect impacts associated with changes to cotton production, including co-product substitution and changes to related crops at regional and global scales. Impact categories assessed included climate change, fossil energy demand, freshwater consumption, water stress, marine and freshwater eutrophication, land occupation and land-use change.

Results and discussion

For both the expansion and contraction scenarios, the changes to climate change impacts (including iLUC) and water impacts were less than would be assumed from current production as determined using attributional LCA. However, the opposite was true for all other impact categories, indicating trade-offs across the impact categories. Climate change impacts under both scenarios were relatively minor because these were largely offset by iLUC. Similarly, under the contraction scenario, water impacts were dominated by indirect impacts associated with regional crops. A sensitivity analysis showed that the results were sufficiently robust to indicate the quantum of changes that could be expected.

Conclusions

A complex array of changes in technologies, production regions and related crops were required to model the environmental impacts of a gross change in cotton production. Australian cotton lint production provides an example of legislation constraining the direct water impacts of production, leading to a contrast between impacts estimated by attributional and consequential LCA. This model demonstrated that indirect products and processes are important contributors to the environmental impacts of Australian cotton lint.

  相似文献   

11.
Purpose

This study aims to apply the product environmental footprint (PEF) methodology to a wooden wall element, the Massiv–Holz–Mauer® (MHM), in an existing building in Northern Italy. The PEF is a multi-criteria measure of the environmental performance of products throughout their life cycle (European Commission 2013).

Methods

The environmental footprint of the MHM wall element was calculated for the impact categories required by the PEF, using a cradle-to-grave approach. Foreground data was collected at each life stage and completed using data from the Ecoinvent 3.1 database (Wernet et al. 2016). An additional analysis (optional according to the PEF methodology) was conducted for assessing the sustainability of forest management in the sites where wood is extracted from, using data from the forest management plan.

Results and discussion

The results show that, for most of the environmental indicators, the use phase has the highest environmental impact, followed by the production, end-of-life, raw material acquisition, and construction phases. These results depend on the different duration of the life cycle phases, and on the attribution of the total operational energy of the building to the structural components of the wall, though other factors, such as the efficiency of the heating system, may be responsible. Future PEF sectorial specification should specify how to account for the use phase of structural building components. For the majority of the impact categories, the impact is mainly due to processes that occur in the background system, such as production of capital goods and construction of facilities and storehouses. The wooden material production generates relatively low impacts, thanks to the fact that the wood is sourced locally and from forests where a close-to-nature forest management is adopted, characterized by natural regeneration without the use of fertilizers and pesticides.

Conclusions

This study shows that the PEF methodology can be successfully applied to a single wood supply chain, allowing the identification of the main hotspots and actions for reducing the environmental impacts. The PEF leaves space for additional environmental information, which, for some product categories, may play an important role. In the case of wood products, we suggest the inclusion of an assessment, even qualitative, of the sustainability of forest management.

  相似文献   

12.
Purpose

The main purpose of this study was to evaluate the use of an integrated life cycle assessment (LCA), artificial neural network, and metaheuristic optimization model to improve the sustainability of tomato-based cropping systems in Iran. The model outputs the combination of input usage in a tomato cropping system, which leads to the highest economic output and the least environmental impact.

Methods

The LCA inventory was created using data from 114 open-field tomato farms in the Alborz Province of Iran during one growing period in 2015. Among all management components, the main focus was on irrigation management systems. The optimization problem was designed by integrating three indicators: carbon footprint (CF), benefit-cost ratio (BCR), and energy use efficiency (EUE) as the objective of field tomato production. The functional unit was 1 kg of tomato aligned with the system boundary of the cradle to market life cycle. Three artificial neural networks (ANNs) were applied to model relationships between the inputs and three indices (CF, BCR, and EUE) as the objective functions. Multi-objective genetic algorithm (MOGA) and multi-objective particle swarm optimization (MOPSO) were used to minimize the CF and maximize the BCR and EUE indicators. The abovementioned aims have been pursued by developing codes in MATLAB software.

Results and discussion

CF, BCR, and EUE were calculated to be 0.26 kg CO2?eq (kg tomato)?1, 1.8, and 0.5, respectively. MOGA results envisage the possibility of an increase of 86% and 50% in the EUE and BCR and a 43% reduction in the CF of tomato production systems. Moreover, EUE and BCR increased by 83% and 49%, and CF was reduced by 39% from the optimum results obtained from the MOPSO algorithm. It was revealed that in order to optimize field tomato production with the target objectives of this study, a large additional use for irrigation pipes, plastic, and machinery in comparison to current situation is required, while a large reduction of biocide, chemical fertilizer, and electricity consumption is indispensable.

Conclusions

According to the results of our study, it was concluded that the optimal solutions require a modernization of irrigation systems and a decrease in the consumption of chemical fertilizers and pesticides. The implementation of management options for such solutions is discussed.

  相似文献   

13.
Purpose

The long-term marginal electricity supply mixes of 40 countries were generated and integrated into version 3.4 of the ecoinvent consequential database. The total electricity production originating from these countries accounts for 77% of the current global electricity generation. The goal of this article is to provide an overview of the methodology used to calculate the marginal mixes and to evaluate the influence of key parameters and methodological choices on the results.

Methods

The marginal mixes are based on public energy projections from national and international authorities and reflect the accumulated effect of changes in demand for electricity on the installation and operation of new-generation capacities. These newly generated marginal mixes are first examined in terms of their compositions and environmental impacts. They are then compared to several sets of alternative electricity supply mixes calculated using different methodological choices or data sources.

Results and discussion

Renewable energy sources (RES) as well as natural gas power plants show the highest growth rates and usually dominate the marginal mixes. Nevertheless, important variations may exist between the marginal mixes of the different countries in terms of their technological compositions and environmental impacts. The examination of the modeling choices reveals substantial variations between the marginal mixes integrated into the ecoinvent consequential database version 3.4 and marginal mixes generated using alternative modeling options. These different modeling possibilities include changes in the methodology, temporal parameters, and the underlying energy scenarios. Furthermore, in most of the impact categories, average (i.e., attributional) mixes cause higher impact scores than marginal mixes due to higher shares of RES in marginal mixes.

Conclusions

Accurate and consistent data for electricity supply is integrated into a consequential database providing a strong basis for the development of consequential Life Cycle Assessments. The methodology adopted in this version of the database eliminates several shortcomings from the previous approach which led to unrealistic marginal mixes in several countries. The use of energy scenarios allows the evolution of the electricity system to be considered within the definition of the marginal mixes. The modeling choices behind the electricity marginal mix should be adjusted to the goal and scope of individual studies and their influence on the results evaluated.

  相似文献   

14.
Purpose

In the booming electric vehicle market, the demand for refined cobalt is showing a blowout growth. China is the largest cobalt-refiner and cobalt-importer in the world. However, the life cycle inventory and potential environmental impact from cobalt refining in China have not been clearly illustrated. This paper builds a comprehensive inventory to support the data needs of downstream users of cobalt sulfate. A “cradle-to-gate” life cycle assessment was conducted to provide theoretical support to stakeholders.

Methods

A life cycle assessment was performed based on ISO 14040 to evaluate the potential environmental impact and recognize the key processes. The system boundary of this study contains four stages of cobalt sulfate production: mining, beneficiation, primary extraction, and refining. Except for the experimental data used in the primary extraction stage, all relevant data are actual operating data. The normalization value was calculated based on the latest released global emission and extraction data.

Results and discussion

Normalization results show that the potential impacts of cobalt refining were mainly concentrated in the fossil depletion and freshwater ecotoxicity categories. The beneficiation stage and the refining stage account for 72% and 26% of the total normalization value, respectively. The beneficiation stage needs to consume a lot of chemicals and energy to increase the cobalt content, due to the low grade of cobalt ore in China. Compared with cobalt concentrate, the use of cobalt-containing waste (e.g., cobalt waste from EV batteries) can ease endpoint impact by up to 73%. With the application of the target electricity structure in 2050, the potential impact of China’s cobalt sulfate production on global warming, fossil depletion, and particulates formation can be reduced by 24%, 22%, and 26%, respectively.

Conclusion

Findings indicate that the chemical inputs and electricity consumption are primary sources of potential environmental impact in China’s cobalt sulfate production. Promoting the development of urban mines can reduce excessive consumption of chemicals and energy in the beneficiation stage. The environmental benefits of transforming the electricity structure and using more renewable energy to reduce dependence on coal-based power in the cobalt refining industry were revealed.

  相似文献   

15.
Purpose

One aim of LCA-based rating tools developed by the apparel industry is to promote a change in demand for textiles by influencing consumer preferences based on the environmental footprint of textiles. Despite a growing consensus that footprints developed using attributional LCA (aLCA) are not suitable to inform decisions that will impact supply and demand, these tools continue to use aLCA. This paper analyses the application of the LCA methods to wool production, specifically the application of aLCA methods that provide a retrospective assessment of impacts and consequential (cLCA) methods that estimate the impacts of a change.

Methods

Attributional and consequential life cycle inventories (LCIs) were developed and analysed to examine how the different methodological approaches affect the estimated environmental impacts of wool.

Results and discussion

Life cycle impact assessment (LCIA) of aLCI and cLCI for wool indicates that estimated global warming and water stress impacts may be considerably lower for additional production of wool, as estimated by cLCIA, than for current production as estimated by aLCIA. However, fossil resource impacts for additional production may be greater than for current production when increased wool production was assumed to displace dedicated sheep meat production.

Conclusions

This work supports the notion that the use of a retrospective assessment method (i.e. aLCA) to produce information that will guide consumer preferences may not adequately represent the impacts of a consumer’s choice because the difference between aLCIA and cLCIA results may be relatively large. As such, rating tools based on attributional LCA are unlikely to be an adequate indicator of the sustainability of textiles used in the apparel industry.

  相似文献   

16.
Purpose

This study aims at finding the environmental impacts generated by an electric disk insulator supply chain, used for the distribution of electricity by an open wire system, through a case study. This study also aims at benchmarking the environmental impacts of an electric insulator manufacturing process by taking ideal condition of zero waste as reference.

Methods

Cradle-to-grave life cycle assessment (LCA) has been carried out by following the guidelines provided in ISO 14040 series standards and using Umberto NXT software. ReCiPe endpoint and ReCiPe midpoint impact assessment methodologies have been used to calculate environmental impacts under various categories. The primary data has been collected from a medium-scale manufacturer of electric disk insulators located at Bikaner in north-west India. The secondary data has been taken from ecoinvent 3.0 database and literature. The environmental impacts using endpoint assessment (ecosystem quality, human health, and resources) and midpoint assessment (climate change, fossil depletion, human toxicity, metal depletion, ozone depletion, terrestrial acidification, and water depletion) categories have been computed. Finally, the results are compared and benchmarked against the ideal zero waste condition using three different production scenarios. The limitation of this study is that the data has been collected only from one manufacturer and its supply chain.

Results and discussion

It has been found that the use of steel, electricity, and fuel; transportation of product; and disposal of water generate high environmental impacts in the supply chain. It has also been found that in the electric disk insulator supply chain, the raw material extraction phase has the highest environmental impacts followed by manufacturing, disposal, transportation, and installation phases. This study has also found that benchmark scenario “B” (zero waste condition) is environmentally more efficient in comparison to scenario “A” (actual recycling condition) and scenario “C” (maximum waste condition).

Conclusions

This study has identified that raw materials, resources, and processes in the supply chain of an electric disk insulator manufacturing unit are responsible for the environmental damage. The various manufacturing processes and installation of the electric disk insulators are similar for all manufacturers except the machinery efficiency and the generated waste. This study provides environmental impacts associated with an electric disk insulator manufacturing process under zero waste or ideal conditions (scenario B). These results are used as a benchmark to compare environmental performance of electric disk insulator supply chain operating under actual conditions.

  相似文献   

17.
Purpose

Cotton yarns spun from natural fibers are widely used in the apparel industry. Most of waste cotton goods are now disposed by incineration or landfill, which brings resource and environmental challenges to the society. Using the waste cotton to spin yarns is an alternative way to forward a more sustainable future. In this research, two scenarios for the environmental impacts of yarns spun from corresponding fibers are investigated, including recycled cotton fibers and virgin cotton fibers.

Methods

The life cycle assessment (LCA) has been conducted according to the collected data from on-site investigation of typical production factories. The life cycle for the recycled cotton yarn production is divided into five stages, i.e., raw material acquisition, transportation, breaking, mixing, and spinning. The life cycle of virgin cotton yarn production is been divided into four stages, i.e., raw material acquisition, transportation, mixing, and spinning. The functional unit is 1000 kg produced yarns which are used for weaving into the fabrics. Notable impacts on climate change, fossil depletion, water depletion, and human toxicity were observed.

Results

The life cycle impact assessment (LCIA) results show that environmental impacts of recycled cotton yarns are far less than those of virgin cotton yarns, except for climate change and water depletion. The reason is that the land occupation and irrigation water have great impact on environmental impacts of cotton cultivation. In spinning, the electricity is the key factor whose environmental impacts account for the most in the virgin cotton yarn scenario, while the electricity and water consumptions are the key factors for the recycled cotton yarn scenario in the life cycle of yarn production. The sensitivity analysis indicates that improving energy efficiency can significantly reduce environmental burdens for both the two scenarios. The uncertainty distribution of water depletion, human toxicity, fossil depletion, and climate change of the two scenarios were determined with a 90% confidence interval.

Conclusions

The LCIA results reveal recycled cotton yarn is a viable alternative to relieve resource and environmental pressure. About 0.5 ha of agricultural land can be saved, 6600 kg CO2 eq can be reduced, and 2783 m3 irrigation water can be saved by using 1000 kg of the recycled cotton yarns. It can be concluded that the recycled cotton fibers can be served as a substitute for virgin cotton fibers to reduce agricultural land and avoid environmental impacts generated from the cotton planting.

  相似文献   

18.
Purpose

The main goal of this work is to evaluate the environmental impact of a 63-m blade for wind generators. The embodied energy and the carbon footprint are used as supporting tools for material selection in the initial project stages.

Methods

Real industrial data regarding the most used materials for wind turbine blade construction are used. Two eco-parameters, embodied energy and carbon footprint, were calculated from each selected material together with values of manufacture, transport, use, and final disposal. The blades must be built to have a mechanical strength high enough to withstand vibrations caused by manufacturing flaws, turbulence, or irregular loading. In this sense, Young’s modulus, yield strength, and density were compared to the environmental footprint data to support the final material choice. This evaluation process of the possible materials to be used in the blade manufacture was carried out in the initial stages of the project.

Results

Composite materials such as glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP), bonded together with an adhesive material, are used to build modern wind turbine blades. Those composites comprise a considerable number of different materials that can be mixed to reach adequate performance. Comparisons were made with 46 pre-selected materials, considering the mechanical behavior and environmental impacts. The final selected materials have better properties than the reference material. Finally, two materials with the desired mechanical properties and with a potential lower negative environmental impact than the reference material were selected.

Conclusions

Replacing the reference resin—epoxy/E-glass fiber—with the epoxy resin with the lowest environmental impact—epoxy/S-glass fiber—will reduce the total value of the environmental load to 102 GJ of energy and 3.4 t of CO2. As important as the material selection in the early stages of product development is the end of life (EoL) choice. In this case, the glass fiber has an EoL potential of 370 GJ of energy and 460 t of CO2 in the remanufacturing option, against zero for the landfill. This work shows that carefully selected raw materials and EoL alternatives for WTB can significantly reduce the environmental impact of this component.

  相似文献   

19.
Purpose

The overall aim of this study is to contribute to the creation of LCA database on electricity generation systems in Ethiopia. This study specifically estimates the environmental impacts associated with wind power systems supplying high voltage electricity to the national grid. The study has regional significance as the Ethiopian electric system is already supplying electricity to Sudan and Djibouti and envisioned to supply to other countries in the region.

Materials and methods

Three different grid-connected wind power systems consisting of four different models of wind turbines with power rates between 1 and 1.67 MW were analyzed for the situation in Ethiopia. The assessment takes into account all the life cycle stages of the total system, cradle to grave, considering all the processes related to the wind farms: raw material acquisition, manufacturing of main components, transporting to the wind farm, construction, operation and maintenance, and the final dismantling and waste treatment. The study has been developed in line with the main principles of the ISO 14040 and ISO 14044 standard procedures. The analysis is done using SimaPro software 8.0.3.14 multi-user, Ecoinvent database version 3.01, and ReCiPe 2008 impact assessment method. The assumed operational lifetime as a baseline is 20 years.

Results and discussion

The average midpoint environmental impact of Ethiopian wind power system per kWh electricity generated is for climate change: 33.6 g CO2 eq., fossil depletion: 8 g oil eq., freshwater ecotoxicity: 0.023 g 1,4-DCB eq., freshwater eutrophication: 0.005 g N eq., human toxicity: 9.9 g 1,4-DCB eq., metal depletion: 18.7 g Fe eq., marine ecotoxicity: 0.098 g 1,4-DCB eq., particulate matter formation: 0.097 g PM10 eq., photochemical oxidant formation: 0.144 g NMVOC, and terrestrial acidification: 0.21 g SO2 eq. The pre-operation phase that includes the upstream life cycle stage is the largest contributor to all the environmental impacts, with shares ranging between 82 and 96%. The values of cumulative energy demand (CED) and energy return on investment (EROI) for the wind power system are 0.393 MJ and 9.2, respectively.

Conclusion

The pre-operation phase is the largest contributor to all the environmental impact categories. The sensitivity and scenario analyses indicate that changes in wind turbine lifespans, capacity factors, exchange rates for parts, transport routes, and treatment activities would result in significant changes in the LCA results.

  相似文献   

20.
Zhang  Lin  Hao  Changfu  Zhai  Ruonan  Wang  Di  Zhang  Jianhui  Bao  Lei  Li  Yiping  Yao  Wu 《Respiratory research》2018,19(1):1-9
Background

Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue.

Methods

The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression.

Results

15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression.

Conclusion

This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号