首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Rhodomyrtone [6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methyl-1-oxobutyl)-9-(2-methylpropyl)-4,9-dihydro-1H-xanthene-1,3(2H)-di-one] from Rhodomyrtus tomentosa (Aiton) Hassk. displayed significant antibacterial activities against Gram-positive bacteria including Bacillus cereus, Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus epidermidis, Streptococcus gordonii, Streptococcus mutans, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus salivarius. Especially noteworthy was the activity against MRSA with a minimum inhibitory concentration (MIC) and a minimum bactericidal concentration (MBC) ranging from 0.39 to 0.78 μg/ml. As shown for S. pyogenes, no surviving cells were detected within 5 and 6 h after treatment with the compound at 8MBC and 4MBC concentrations, respectively. Rhodomyrtone displays no bacteriolytic activity, as determined by measurement of the optical density at 620 nm. A rhodomyrtone killing test with S. mutans using phase contrast microscopy showed that this compound caused a few morphological changes as the treated cells were slightly changed in color and bigger than the control when they were killed. Taken together, the results support the view that rhodomyrtone has a strong bactericidal activity on Gram-positive bacteria, including major pathogens.  相似文献   

2.
We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC = 2–16 μg ml?1) for the five compounds bearing longer alkyl chains (4cg; 8–14 carbons), which were also the most active against Candida (MIC = 2–64 μg ml?1). Compound 4e exhibited the highest levels of inhibitory activity (MIC = 2–16 μg ml?1) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates.  相似文献   

3.
Three novel structural series of 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs were designed, synthesized and evaluated for their in vitro antibacterial activity. All the target compounds exhibited excellent activity against erythromycin-susceptible Streptococcus pyogenes, and significantly improved activity against three phenotypes of erythromycin-resistant Streptococcus pneumoniae compared with clarithromycin and azithromycin. Among the three series of azithromycin analogs, the novel series of 11,4″-disubstituted azithromycin analogs 9ak exhibited the most effective and balanced activity against susceptible and resistant bacteria. Among them, compound 9j showed the most potent activity against Staphylococcus aureus ATCC25923 (0.008 µg/mL) and Streptococcus pyogenes R2 (1 µg/mL). Besides, all the 11,4″-disubstituted azithromycin analogs 9ak except 9f shared the identical activity with the MIC value <0.002 µg/mL against Streptococcus pyogenes S2. Furthermore, compounds 9g, 9h, 9j and 9k displayed significantly improved activity compared with the references against all the three phenotypes of resistant S. pneumoniae. Particularly, compound 9k was the most effective (0.06, 0.03 and 0.125 µg/mL) against all the erythromycin-resistant S. pneumoniae expressing the erm gene, the mef gene and the erm and mef genes, exhibiting 2133, 133 and 2048-fold more potent activity than azithromycin, respectively.  相似文献   

4.
4-Thiazolidinones derivatives of marine bromopyrrole alkaloids were synthesized as potential antibiofilm compounds. Among the synthesized compounds, some showed promising antibiofilm activity. Biological data revealed that 1,3-thiazolidin-4-one derivatives are more potent antibiofilm agents compared to 1,3-thiazinan-4-ones. Antibiofilm activity of compound 4b, 4c (MIC = 0.78 μg/ml) was 3-fold superior than standard vancomycin (MIC = 3.125 μg/ml) while activity of compound 4d, 4f, 4g and 4h was 2-fold (MIC = 1.56 μg/ml) against Staphylococcus aureus biofilm. Compound 4b–4h showed equal antibiofilm activity against Staphylococcus epidermidis compared to standard Vancomycin (MIC = 3.125 μg/ml).  相似文献   

5.
A library of small aminobenzamide derivatives was synthesised to explore a cationic amphipathic motif found in marine natural antimicrobials. The most potent compound E23 displayed minimal inhibitory concentrations (MICs) of 0.5–2 μg/ml against several Gram-positive bacterial strains, including methicillin resistant Staphylococcus epidermidis (MRSE). E23 was also potent against 275 clinical isolates including Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and ESBL–CARBA producing multi-resistant Gram-negative bacteria. The study demonstrates how structural motifs found in marine natural antimicrobials can be a valuable source for making novel antimicrobial lead-compounds.  相似文献   

6.
Metronidazole has a broad-spectrum antibacterial activity. Hereby a series of novel metronidazole derivatives were designed and synthesized based on nitroimidazole scaffold in order to find some more potent antibacterial drugs. For these compounds which were reported for the first time, their antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis and Staphylococcus aureus were tested. These compounds showed good antibacterial activities against Gram-positive strains. Compound 4m represented the most potent antibacterial activity against S. aureus ATCC 25923 with MIC of 0.003 μg/mL and it showed the most potent activity against S. aureus TyrRS with IC50 of 0.0024 μM. Molecular docking of 4m into S. aureus tyrosyl-tRNA synthetase active site were also performed to determine the probable binding mode.  相似文献   

7.
A series of 23 novel bis-phosphonium salts based on pyridoxine were synthesized and their antibacterial activities were evaluated in vitro. All compounds were inactive against gram-negative bacteria and exhibited the structure-dependent activity against gram-positive bacteria. The antibacterial activity enhanced with the increase in chain length at acetal carbon atom in the order n-Pr > Et > Me. Further increasing of length and branching of alkyl chain leads to the reduction of antibacterial activity. Replacement of the phenyl substituents at the phosphorus atoms in 5,6-bis(triphenylphosphonio(methyl))-2,2,8-trimethyl-4H-[1,3]-dioxino[4,5-c]pyridine dichloride (compound 1) with n-butyl, m-tolyl or p-tolyl as well as chloride anions in the compound 1 with bromides (compound 14a) increased the activity against Staphylococcus aureus and Staphylococcus epidermidis up to 5 times (MICs = 1–1.25 μg/ml). But in practically all cases chemical modifications of compound 1 led to the increase of its toxicity for HEK-293 cells. The only exception is compound 5,6-bis[tributylphosphonio(methyl)]-2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridine dichloride (10a) which demonstrated lower MIC values against S. aureus and S. epidermidis (1 μg/ml) and lower cytotoxicity on HEK-293 cells (CC50 = 200 μg/ml). Compound 10a had no significant mutagenic and genotoxic effects and was selected for further evaluation. It should be noted that all bis-phosphonium salt based on pyridoxine were much more toxic than vancomycin.  相似文献   

8.
An effective intramolecular C–H arylation reaction catalyzed by a bimetallic catalytic system Pd(OAc)2/CuI for the synthesis of fluorine-substituted carbazoles from corresponding N-phenyl-2-haloaniline derivatives under ligand free conditions is demonstrated. The established method is effective for both N-phenyl-2-bromoaniline and N-phenyl-2-chloroaniline, and requires the low loading of Pd(OAc)2 (0.5 mol %). A series of new fluorinated carbazoles were synthesized in excellent yields using the protocol (>83%, 19 examples) and were fully characterized by 1H, 13C and 19F NMR spectral data, HRMS and elemental analysis. All compounds were evaluated for their antibacterial activities against four bacteria (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and methicillin-resistant S. aureus with resistance to gentamicin) by serial dilution technique. All tested compounds showed antibacterial activity against three test strains (S. aureus, B. subtilis and MRSA), and most of these compounds displayed pronounced antimicrobial activities against these three strains with low MIC values ranging from 0.39 to 6.25 μg/mL. Among them, compounds 7 and 14 exhibited potent inhibitory activity better than reference drugs meropenem and streptomycin. Three compounds (2, 4 and 5) showed antibacterial activity against E. coli. with MIC values from 12.5 to 25 μg/mL.  相似文献   

9.
Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11,13-trien-18-yl)-d-serinate], with an MIC90 of 60 μg/mL against Staphylococcus aureus ATCC 25923, and 8 μg/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45 μg/mL.  相似文献   

10.
A series of 8,9-disubstituted adenines (4, 5, 8), 6-substituted aminopurines (10–13) and 9-(p-fluorobenzyl/cyclopentyl)-6-substituted aminopurines (16, 17, 19–30) have been prepared and the antimicrobial activities of these compounds against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA, standard and clinical isolate), Bacillus subtilis, Escherichia coli and Candida albicans were evaluated. 6-[(N-phenylaminoethyl)amino]-9H-purine (12) which has no substitution at N-9 position and 9-cyclopentyl-6-[(4-fluorobenzyl)amino]-9H-purine (24) exhibited excellent activity against C. albicans with MIC 3.12 μg/mL. These compounds displayed better antifungal activity than that of standard oxiconazole. Furthermore, compound 22 carrying 4-chlorobenzylamino group at the 6-position of the purine moiety exhibited comparable antibacterial activity with that of the standard ciprofloxacin against both of the drug-resistant bacteria (MRSA, standard and clinical isolate).  相似文献   

11.
Three series of rhodanine derivatives bearing a quinoline moiety (6ah, 7ag, and 8ae) have been synthesized, characterized, and evaluated as antibacterial agents. The majority of these compounds showed potent antibacterial activities against several different strains of Gram-positive bacteria, including multidrug-resistant clinical isolates. Of the compounds tested, 6g and 8c were identified as the most effective with minimum inhibitory concentration (MIC) values of 1 μg/mL against multidrug-resistant Gram-positive organisms, including methicillin-resistant and quinolone-resistant Staphylococcus aureus (MRSA and QRSA, respectively). None of the compounds exhibited any activity against the Gram-negative bacteria Escherichia coli 1356 at 64 μg/mL. The cytotoxic activity assay showed that compounds 6g, 7g and 8e exhibited in vitro antibacterial activity at non-cytotoxic concentrations. Thus, these studies suggest that rhodanine derivatives bearing a quinoline moiety are interesting scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

12.
A total of 29 novel sulfenamide compounds were synthesized, spectroscopically characterized and evaluated in vitro for antimicrobial activity against various infectious pathogens. Compounds 1b and 2c exhibited potent inhibition against clinical Methicillin-resistant Staphylococcus aureus (MRSA) strains with minimum inhibitory concentration (MIC) values of 1.56 μg/mL.  相似文献   

13.
A series of novel 11-O-carbamoyl clarithromycin ketolides were designed, synthesized and evaluated for their in vitro antibacterial activity. The results showed that the majority of the target compounds displayed improved activity compared with references against erythromycin-resistant S. pneumoniae A22072 expressing the mef gene, S. pneumoniae B1 expressing the erm gene and S. pneumoniae AB11 expressing the mef and erm genes. In particular, compounds 9, 18, 19 and 22 showed the most potent activity against erythromycin-resistant S. pneumoniae A22072 with the MIC values of 0.5 μg/mL. Furthermore, compounds 11, 18, 19, 24 and 29 were also found to exhibit favorable antibacterial activity against erythromycin-susceptible S. pyogenes with the MIC values of 0.125–1 μg/mL, and moderate activity against erythromycin-susceptible S. aureus ATCC25923 and B. subtilis ATCC9372.  相似文献   

14.
Novel C(3) propenylamide and propenylsulfonamide cephalosporins have been synthesized and tested for their ability to inhibit the penicillin-binding protein 2′ (PBP2′) from Staphylococcus epidermidis and the growth of a panel of clinically relevant bacterial species, including methicillin-resistant Staphylococcus aureus (MRSA). The most potent compounds inhibited the growth of MRSA strains with minimum inhibitory concentrations (MIC) as low as 1 μg/mL. The structure–activity relationship revealed the potential for further optimization of this new cephalosporin class.  相似文献   

15.
Three series of salicylanilides, esters of N-phenylsalicylamides and 2-hydroxy-N-[1-(2-hydroxyphenylamino)-1-oxoalkan-2-yl]benzamides, in total thirty target compounds were synthesized and characterized. The compounds were evaluated against seven bacterial and three mycobacterial strains. The antimicrobial activities of some compounds were comparable or higher than the standards ampicillin, ciprofloxacin or isoniazid. Derivatives 3f demonstrated high biological activity against Staphylococcus aureus (?0.03 μmol/L), Mycobacterium marinum (?0.40 μmol/L) and Mycobacterium kansasii (1.58 μmol/L), 3g shows activity against Clostridium perfringens (?0.03 μmol/L) and Bacillus cereus (0.09 μmol/L), 3h against Pasteurella multocida (?0.03 μmol/L) and M. kansasii (?0.43 μmol/L), 3i against methicillin-resistant S. aureus and B. cereus (?0.03 μmol/L). The structure–activity relationships are discussed for all the compounds.  相似文献   

16.
A series of new 2-(1-(2-(substituted-phenyl)-5-methyloxazol-4-yl)-3-(2-substitued-phenyl)-4,5-dihydro-1H-pyrazol-5-yl)-7-substitued-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized. The results showed that compounds 9q and 10q can strongly inhibit Staphylococcus aureus DNA gyrase and Bacillus subtilis DNA gyrase (with IC50s of 0.125 and 0.25 μg/mL against S. aureus DNA gyrase, 0.25 and 0.125 μg/mL against B. subtilis DNA gyrase). On the basis of the biological results, structure–activity relationships were also discussed.  相似文献   

17.
In this paper, we have reported seventeen novel synthetic organic compounds derived from marine bromopyrrole alkaloids, exhibiting potential inhibition of biofilm produced by Gram-positive bacteria. Compound 5f with minimum biofilm inhibitory concentration (MBIC) of 0.39, 0.78 and 3.125 μg/mL against MSSA, MRSA and SE respectively, emerged as promising anti-biofilm lead compounds. In addition, compounds 5b, 5c, 5d, 5e, 5f, 5h, 5i and 5j revealed equal potency as that of the standard drug Vancomycin (MBIC = 3.125 μg/mL) against Streptococcus epidermidis. Notably, most of the synthesized compounds displayed better potency than Vancomycin indicating their potential as inhibitors of bacterial biofilm. The cell viability assay for the most active hybrid confirms its anti-virulence properties which need to be further researched.  相似文献   

18.
Three novel series of 5-aryloxypyrazole derivatives have been synthesized and tested for their antibacterial activity. The majority of the synthesized compounds showed potent inhibitory activity against Gram-positive bacteria Staphylococcus aureus 4220, especially against the strains of multidrug-resistant clinical isolates (MRSA3167/3506 and QRSA3505/3519). Among which compounds IIIb, IIIg and IIIm showed the most potent levels of activity (MIC = 1 μg/mL) against the multidrug-resistant strains. And cytotoxic activity assay showed that the compounds tested did not affect cell viability on the Human cervical (HeLa) cells at their MICs. The current study therefore suggests that 5-aryloxypyrazoles bearing a rhodanine-3-aromatic acid moiety are promising scaffolds for the development of novel Gram-positive antibacterial agents.  相似文献   

19.
An efficient synthesis of 29 new binaphthyl-based neutral, and mono- and di-cationic, peptoids is described. Some of these compounds had antibacterial activities with MIC values of 1.9–3.9 μg/mL against Staphylococcus aureus. One peptoid had a MIC value of 6 μg/mL against a methicillin-resistant strain of S. aureus (MRSA) and a MIC value of 2 μg/mL against vancomycin-resistant strains of enterococci (VRE).  相似文献   

20.
As part of an on-going project to isolate antibacterial compounds from rare conifer species, a new abietane diterpene, 2β-acetoxyferruginol was isolated from the stem bark of Prumnopitys andina. Molecular modelling studies were conducted to explain some of the NOEs observed in the A-ring of this compound and to support assignment of relative stereochemistry. This new compound had antibacterial activity at 8 μg/ml against two effluxing strains of Staphylococcus aureus, but interestingly was inactive at 128 μg/ml against a wild-type strain and against a methicillin-resistant (MRSA) clinical isolate. We have previously demonstrated that ferruginol is active against these four S. aureus stains and therefore the results indicate that the presence of the acetoxy group has a detrimental effect on antibacterial activity against certain strains. 2β-Acetoxyferruginol was also assayed against Propionibacterium acnes and was active at 4 μg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号