首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.  相似文献   

2.
Despite extensive studies, there are still many unanswered questions regarding the mechanism of hedgehog signaling and the phylogenic conservation of hedgehog function in vertebrates. For example, whether hedgehog signaling in vertebrates requires smoothened is unclear, and the role of hedgehog activity in zebrafish is controversial. We show that inactivation of smoothened by retroviral insertions in zebrafish results in defects that are characteristic of hedgehog deficiencies, including abnormalities in body size, the central nervous system, adaxial mesoderm, cartilage and pectoral fins. We demonstrate that, as in Drosophila, vertebrate smoothened is essential for hedgehog signaling, and functions upstream of protein kinase A. Further analysis of neural tube defects revealed the absence of lateral floor plate and secondary motoneurons, but the presence of medial floor plate and primary motoneurons in smoothened mutant embryos. Blocking maternal hedgehog signaling by cyclopamine eliminates primary motoneurons, but not medial floor plate. Interestingly, even after inhibition of maternal hedgehog activity, the midbrain dopaminergic neurons still form, and looping of the heart does not randomize in the mutants. We also found decreased proliferation and increased apoptosis in the mutants. Taken together, these data demonstrate the conserved role of vertebrate smoothened in the hedgehog signaling pathway, and reveal similarities and differences of hedgehog function between teleosts and amniotes.  相似文献   

3.
Sonic hedgehog (Shh) signaling patterns many vertebrate tissues. shh mutations dramatically affect mouse ventral forebrain and floor plate but produce minor defects in zebrafish. Zebrafish have two mammalian Shh orthologs, sonic hedgehog and tiggy-winkle hedgehog, and another gene, echidna hedgehog, that could have overlapping functions. To examine the role of Hedgehog signaling in zebrafish, we have characterized slow muscle omitted (smu) mutants. We show that smu encodes a zebrafish ortholog of Smoothened that transduces Hedgehog signals. Zebrafish smoothened is expressed maternally and zygotically and supports specification of motoneurons, pituitary cells and ventral forebrain. We propose that smoothened is required for induction of lateral floor plate and a subpopulation of hypothalamic cells and for maintenance of medial floor plate and hypothalamic cells.  相似文献   

4.
5.
The regulation of hedgehog signaling by vesicular trafficking was exemplified by the finding that Rab23, a Rab-GTPase vesicular transport protein, is mutated in open brain mice. In this study, the localization of Rab23 was analyzed by light and immunoelectron microscopy after expression of wild-type (Rab23-GFP), constitutively active Rab23 (Rab23Q68L-GFP), and inactive Rab23 (Rab23S23N-GFP) in a range of mammalian cell types. Rab23-GFP and Rab23Q68L-GFP were predominantly localized to the plasma membrane but were also associated with intracellular vesicular structures, whereas Rab23S23N-GFP was predominantly cytosolic. Vesicular Rab23-GFP colocalized with Rab5Q79L and internalized transferrin-biotin, but not with a marker of the late endosome or the Golgi complex. To investigate Rab23 with respect to members of the hedgehog signaling pathway, Rab23-GFP was coexpressed with either patched or smoothened. Patched colocalized with intracellular Rab23-GFP but smoothened did not. Analysis of patched distribution by light and immunoelectron microscopy revealed it is primarily localized to endosomal elements, including transferrin receptor-positive early endosomes and putative endosome carrier vesicles and, to a lesser extent, with LBPA-positive late endosomes, but was excluded from the plasma membrane. Neither patched or smoothened distribution was altered in the presence of wild-type nor mutant Rab23-GFP, suggesting that despite the endosomal colocalization of Rab23 and patched, it is likely that Rab23 acts more distally in regulating hedgehog signaling.  相似文献   

6.
Hedgehog signaling is required for multiple aspects of brain development, including growth, the establishment of both dorsal and ventral midline patterning and the generation of specific cell types such as oligodendrocytes and interneurons. To identify more precisely when during development hedgehog signaling mediates these events, we directed the removal of hedgehog signaling within the brain by embryonic day 9 of development, using a FoxG1(Cre) driver line to mediate the removal of a conditional smoothened null allele. We observed a loss of ventral telencephalic patterning that appears to result from an initial lack of specification of these structures rather than by changes in proliferation or cell death. A further consequence of the removal of smoothened in these mice is the near absence of both oligodendrocytes and interneurons. Surprisingly, the dorsal midline appears to be patterned normally in these mutants. Together with previous analyses, the present results demonstrate that hedgehog signaling in the period between E9.0 and E12 is essential for the patterning of ventral regions and the generation of cell types that are thought to largely arise from them.  相似文献   

7.
8.
During gastrulation in the mouse, mesoderm is induced and patterned by secreted signaling molecules, giving rise first to primitive erythroblasts and vascular endothelial cells. We have demonstrated previously that development of these lineages requires a signal(s) secreted from the adjacent primitive endoderm. We now show that Indian hedgehog (Ihh) is a primitive endoderm-secreted signal that alone is sufficient to induce formation of hematopoietic and endothelial cells. Strikingly, as seen with primitive endoderm, Ihh can respecify prospective neural ectoderm (anterior epiblast) along hematopoietic and endothelial (posterior) lineages. Downstream targets of the hedgehog signaling pathway (the genes encoding patched, smoothened and Gli1) are upregulated in anterior epiblasts cultured in the presence of Ihh protein, as is Bmp4, which may mediate the effects of Ihh. Blocking Ihh function in primitive endoderm inhibits activation of hematopoiesis and vasculogenesis in the adjacent epiblast, suggesting that Ihh is an endogenous signal that plays a key role in the development of the earliest hemato-vascular system. To our knowledge, these are the earliest functions for a hedgehog protein in post-implantation development in the mouse embryo.  相似文献   

9.
Inductive signals from adjacent tissues initiate differentiation within the somite. In this study, we used mouse embryos mutant for the BMP antagonists noggin (Nog) and gremlin 1 (Grem1) to characterize the effects of BMP signaling on the specification of the sclerotome. We confirmed reduction of Pax1 and Pax9 expression in Nog mutants, but found that Nog;Grem1 double mutants completely fail to initiate sclerotome development. Furthermore, Nog mutants that also lack one allele of Grem1 exhibit a dramatic reduction in axial skeleton relative to animals mutant for Nog alone. By contrast, Pax3, Myf5 and Lbx1 expression indicates that dermomyotome induction occurs in Nog;Grem1 double mutants. Neither conditional Bmpr1a mutation nor treatment with the BMP type I receptor inhibitor dorsomorphin expands sclerotome marker expression, suggesting that BMP antagonists do not have an instructive function in sclerotome specification. Instead, we hypothesize that Nog- and Grem1-mediated inhibition of BMP is permissive for hedgehog (Hh) signal-mediated sclerotome specification. In support of this model, we found that culturing Nog;Grem1 double-mutant embryos with dorsomorphin restores sclerotome, whereas Pax1 expression in smoothened (Smo) mutants is not rescued, suggesting that inhibition of BMP is insufficient to induce sclerotome in the absence of Hh signaling. Confirming the dominant inhibitory effect of BMP signaling, Pax1 expression cannot be rescued in Nog;Grem1 double mutants by forced activation of Smo. We conclude that Nog and Grem1 cooperate to maintain a BMP signaling-free zone that is a crucial prerequisite for Hh-mediated sclerotome induction.  相似文献   

10.
The hedgehog signaling network regulates pattern formation, proliferation, cell fate and stem/progenitor cell self-renewal in many organs. Altered hedgehog signaling is implicated in 20-25% of all cancers, including breast cancer. We demonstrated previously that heterozygous disruption of the gene encoding the patched-1 (PTCH1) hedgehog receptor, a negative regulator of smoothened (Smo) in the absence of ligand, led to mammary ductal dysplasia in virgin mice. We now show that expression of activated human SMO (SmoM2) under the mouse mammary tumor virus (MMTV) promoter in transgenic mice leads to increased proliferation, altered differentiation, and ductal dysplasias distinct from those caused by Ptch1 heterozygosity. SMO activation also increased the mammosphere-forming efficiency of primary mammary epithelial cells. However, limiting-dilution transplantation showed a decrease in the frequency of regenerative stem cells in MMTV-SmoM2 epithelium relative to wild type, suggesting enhanced mammosphere-forming efficiency was due to increased survival or activity of division-competent cell types under anchorage-independent growth conditions, rather than an increase in the proportion of regenerative stem cells per se. In human clinical samples, altered hedgehog signaling occurs early in breast cancer development, with PTCH1 expression reduced in approximately 50% of ductal carcinoma in situ (DCIS) and invasive breast cancers (IBC). Conversely, SMO is ectopically expressed in 70% of DCIS and 30% of IBC. Surprisingly, in both human tumors and MMTV-SmoM2 mice, SMO rarely colocalized with the Ki67 proliferation marker. Our data suggest that altered hedgehog signaling may contribute to breast cancer development by stimulating proliferation, and by increasing the pool of division-competent cells capable of anchorage-independent growth.  相似文献   

11.
Suppressing Wnt signaling by the hedgehog pathway through sFRP-1   总被引:1,自引:0,他引:1  
  相似文献   

12.
The Hedgehog (Hh-) signaling pathway is a key developmental pathway which controls patterning, growth and cell migration in most tissues, but evidence has accumulated showing that many human tumors aberrantly reactivate this pathway. Smoothened antagonists offer opportunities for the treatment of malignancies dependent on the Hh pathway, and the most advanced clinical candidates are demonstrating encourage initial results. A novel series of [6,5]-bicyclic tetrahydroimidazo[1,5-a]pyrazine-1,3(2H,5H)-dione smoothened antagonists has been identified, and the series has been extensively explored to ascertain the key detriments for activity, demonstrating that the trans-2-phenylcyclopropyl and hydantoin ring systems are critical for potency, while a variety of urea substituents can be tolerated. The combination of these optimal groups gives smoothened antagonists with activity in the low nanomolar range.  相似文献   

13.
Human embryonic stem cells (hESCs) are potential therapeutic tools and models of human development. With a growing interest in primary cilia in signal transduction pathways that are crucial for embryological development and tissue differentiation and interest in mechanisms regulating human hESC differentiation, demonstrating the existence of primary cilia and the localization of signaling components in undifferentiated hESCs establishes a mechanistic basis for the regulation of hESC differentiation. Using electron microscopy (EM), immunofluorescence, and confocal microscopies, we show that primary cilia are present in three undifferentiated hESC lines. EM reveals the characteristic 9 + 0 axoneme. The number and length of cilia increase after serum starvation. Important components of the hedgehog (Hh) pathway, including smoothened, patched 1 (Ptc1), and Gli1 and 2, are present in the cilia. Stimulation of the pathway results in the concerted movement of Ptc1 out of, and smoothened into, the primary cilium as well as up-regulation of GLI1 and PTC1. These findings show that hESCs contain primary cilia associated with working Hh machinery.  相似文献   

14.
Hedgehog signaling pathway inhibitors are emerging as new therapeutic intervention against cancer. A novel series of N-(2-pyrimidinylamino) benzamide derivatives as hedgehog signaling pathway inhibitors were designed and synthesized. Most compounds presented significant inhibitory effect on hedgehog signaling pathway, among which 21 compounds exhibited more potent than vismodegib. Furthermore, compound 6a showed moderate pharmacokinetic properties in vivo, representing a promising lead compound for further exploration.  相似文献   

15.
A novel series of hedgehog signaling pathway inhibitors has been designed based on the 4-(2-pyrimidinylamino) benzamides scaffold. The synthesis and SAR of these compounds are described. Optimization leads to the identification of compound 3c, a potent and orally available agent with improved physicochemical and pharmacokinetic properties.  相似文献   

16.
Motoneuronal loss is the main feature of amyotrophic lateral sclerosis, although pathogenesis is extremely complex involving both neural and muscle cells. In order to translationally engage the sonic hedgehog pathway, which is a promising target for neural regeneration, recent studies have reported on the neuroprotective effects of clobetasol, an FDA-approved glucocorticoid, able to activate this pathway via smoothened. Herein we sought to examine functional, cellular, and metabolic effects of clobetasol in a neurotoxic mouse model of spinal motoneuronal loss. We found that clobetasol reduces muscle denervation and motor impairments in part by restoring sonic hedgehog signaling and supporting spinal plasticity. These effects were coupled with reduced pro-inflammatory microglia and reactive astrogliosis, reduced muscle atrophy, and support of mitochondrial integrity and metabolism. Our results suggest that clobetasol stimulates a series of compensatory processes and therefore represents a translational approach for intractable denervating and neurodegenerative disorders.Subject terms: Biochemistry, Diseases of the nervous system, Glial biology, Physiology  相似文献   

17.
Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.  相似文献   

18.
19.
A series of anthranilamide derivatives were designed and synthesized as novel smoothened (SMO) inhibitors based on the SMO inhibitor taladegib (LY2940680), which can also inhibit the SMO-D473H mutant, via a ring-opening strategy. The phthalazine core in LY2940680 was replaced with anthranilamide, which retained the inhibitory activity towards the hedgehog (Hh) signaling pathway as evidenced by a dual luciferase reporter gene assay. Compound 12a displayed the best inhibitory activity against the Hh signaling pathway with IC50 value of 34.09 nM, and exhibited better proliferation inhibitory activity towards the Daoy cell line (IC50 = 0.48 μM) than LY2940680 (IC50 = 0.79 μM).  相似文献   

20.
Foliation of the mouse cerebellum occurs primarily during the first 2 weeks after birth and is accompanied by tremendous proliferation of granule cell precursors (GCPs). We have previously shown that sonic hedgehog (Shh) signaling correlates spatially and temporally with fissure formation, and that Gli2 is the main activator driving Shh induced proliferation of embryonic GCPs. Here, we have tested whether the level of Shh signaling regulates the extent of cerebellar foliation. By progressively lowering signaling by removing Gli1 and Gli2 or the Shh receptor smoothened, we found the extent of foliation is gradually reduced, and that this correlates with a decrease in the duration of GCP proliferation. Importantly, the pattern of the remaining fissures in the mutants corresponds to the first fissures that form during normal development. In a complementary manner, an increase in the level and length of Shh signaling results in formation of an extra fissure in a position conserved in rat. The complexity of cerebellar foliation varies greatly between vertebrate species. Our studies have uncovered a mechanism by which the level and length of Shh signaling could be integral to determining the distinct number of fissures in each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号