首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inosine monophosphate dehydrogenases (IMPDHs) are the committed step in de novo guanine nucleotide biosynthesis. There are two separate, but very closely related IMPDH isoenzymes, termed type I and type II. IMPDHs are widely believed to be major targets for cancer and transplantation therapy. Mycophenolic acid (MPA) is a potent inhibitor of IMPDHs. Previously, we found that MPA acted as a latent agonist of this nuclear hormone receptor in U2OS cells, and 6'-hydroxamic acid derivatives of MPA inhibited tubulin-specific histone deacetylase[s] (HDAC[s]) in HeLa cells. Although MPA is a promising lead compound, structure-activity relationships (SARs) for inhibition of IMPDH, and the mechanism action of MPA derivatives have not well been understood. We therefore synthesized, evaluated MPA derivatives as IMPDH inhibitor in vitro and cellular level, and explored their biological function and mechanism in cultured cells. This paper exhibits that (i) functional groups at C-5, C-7, and C-6' positions in MPA are important for inhibitory activity against IMPDH, (ii) it is difficult to improve specificity against IMPDH II by modification of 5-, 7-, and 6'-group, (iii) demethylation of 5-OMe results in increasing hydrophilicity, and lowering cell permeability, (iv) ester bonds of protective groups at C-7 and C-6' positions are hydrolyzed to give MPA in cultures, (v) the effects of a tubulin-specific HDAC[s] inhibitor on proliferation and differentiation are weaker than its inhibitory activity against IMPDH. The present work may provide insight into the development of a new class of drug lead for treating cancer and transplantation.  相似文献   

2.
Novel, low molecular weight inhibitors of IMPDH have been discovered through the application of a validated virtual screening protocol. A series of 21 IMPDH inhibitors were used to validate the docking procedure. Application of this procedure to the selection of compounds for screening from an in-house database resulted in a 50-fold reduction in the size of the screening set (3425 to 74 compounds) and gave a hit-rate of 10% on biological evaluation.  相似文献   

3.
Histone deacetylase (HDAC) proteins have emerged as important targets for anti-cancer drugs, with four small molecules approved for use in the clinic. Suberoylanilide hydroxamic acid (Vorinostat, SAHA) was the first FDA-approved HDAC inhibitor for cancer treatment. However, SAHA inhibits most of the eleven HDAC isoforms. To understand the structural requirements of HDAC inhibitor selectivity and develop isoform selective HDAC inhibitors, SAHA analogs modified in the linker at the C5 position were synthesized and tested for potency and selectivity. C5-modified SAHA analogs displayed dual selectivity to HDAC6 and HDAC8 over HDAC 1, 2, and 3, with only a modest reduction in potency. These findings are consistent with prior work showing that modification of the linker region of SAHA can alter isoform selectivity. The observed HDAC6/8 selectivity of C5-modified SAHA analogs provide guidance toward development of isoform selective HDAC inhibitors and more effective anti-cancer drugs.  相似文献   

4.
Histone deacetylase (HDAC) 10, a class II family, has been implicated in various tumors and non-tumor diseases, which makes the discovery of biological functions and novel inhibitors a fundamental endeavor. In cancers, HDAC10 plays crucial roles in regulating various cellular processes through its epigenetic functions or targeting some decisive molecular or signaling pathways. It also has potential clinical utility for targeting tumors and non-tumor diseases, such as renal cell carcinoma, prostate cancer, immunoglobulin A nephropathy (IgAN), intracerebral hemorrhage, human immunodeficiency virus (HIV) infection and schizophrenia. To date, relatively few studies have investigated HDAC10-specific inhibitors. Therefore, it is important to study the biological functions of HDAC10 for the future development of specific HDAC10 inhibitors. In this review, we analyzed the biological functions, mechanisms and inhibitors of HDAC10, which makes HDAC10 an appealing therapeutic target.  相似文献   

5.
Histone deacetylases (HDACs) belong to a group of epigenetic regulatory enzymes that participate in modulating the acetylation level of histone lysine residues as well as non‐histone proteins, and they play a key role in the regulation of gene expression. HDACs are potential anticancer drug targets highly expressed in various kinds of cancer cells. So far, five small molecules targeting HDACs have been approved for the therapy of cancer, and over 20 inhibitors of HDACs are under different phases of clinical trials. Among them, hydroxamate‐based HDAC inhibitors (HDACis) represent a well‐investigated series of chemical entities. The current review covers the recent progress in the discovery process, form SAHA to hydroxamate HDAC inhibitors with branched CAP region and linear linker. At the same time, the pharmacological and structure‐activity relationship (SAR) studies of the specific derivatives from SAHA and the HDACis with branched CAP region and linear linker are also introduced.  相似文献   

6.
Histone deacetylases (HDACs) are important class of enzymes that deacetylate the ε-amino group of the lysine residues in the histone tails to form a closed chromatin configuration resulting in the regulation of gene expression. Inhibition of these HDACs enzymes have been identified as one of the promising approaches for cancer treatment. The type-specific inhibition of class I HDAC enzymes is known to elicit improved therapeutic effects and thus, the search for promising type-specific HDAC inhibitors compounds remains an ongoing research interest in cancer drug discovery. Several different strategies are employed to identify the features that could identify the isoform specificity factors in these HDAC enzymes. This study combines the insilico docking and energy-optimized pharmacophore (e-pharmacophore) mapping of several known HDACi's to identify the structural variants that are significant for the interactions against each of the four class I HDAC enzymes. Our hybrid approach shows that all the inhibitors with at least one aromatic ring in their linker regions hold higher affinities against the target enzymes, while those without any aromatic rings remain as poor binders. We hypothesize the e-pharmacophore models for the HDACi's against all the four Class I HDAC enzymes which are not reported elsewhere. The results from this work will be useful in the rational design and virtual screening of more isoform specific HDACi's against the class I HDAC family of proteins.  相似文献   

7.
Histone deacetylases (HDACs) are involved in post-translational modification and gene expression. Cancer cells recruited amounts of HDACs for their survival by epi-genetic down regulation of tumor suppressor genes. HDACs have been the promising targets for treatment of cancer, and many HDAC inhibitors have been investigated nowadays. In previous study, we synthesized δ-lactam core HDAC inhibitors which showed potent HDAC inhibitory activities as well as cancer cell growth inhibitory activities. Through QSAR study of the δ-lactam based inhibitors, the smaller core is suggested as more active than larger one because it fits better in narrow hydrophobic tunnel of the active pocket of HDAC enzyme. The smaller γ-lactam core HDAC inhibitors were designed and synthesized for biological and property optimization. Phenyl, naphthyl and thiophenyl groups were introduced as the cap groups. Hydrophobic and bulky cap groups increase potency of HDAC inhibition because of hydrophobic interaction between HDAC and inhibitors. In overall, γ-lactam based HDAC inhibitors showed more potent than δ-lactam analogues.  相似文献   

8.
Histone deacetylases (HDACs) are involved in post-translational modification and epi-genetic expression, and have been the intriguing targets for treatment of cancer. In previous study, we reported synthesis and the biological preliminary results of γ-lactam based HDAC inhibitors. Based on the previous results, smaller γ-lactam core HDAC inhibitors are more active than the corresponding series of larger δ-lactam based analogues and the hydrophobic and bulky cap groups are required for better potency which decreased microsomal stability. Thus, γ-lactam analogues with methoxy, trifluoromethyl groups of ortho-, meta-, para-positions of cap group were prepared and evaluated their biological potency. Among them, trifluoromethyl analogues, which have larger lipophilicity, showed better HDAC inhibitory activity than other analogues. In overall, lipophilicity leads to increase hydrophobic interaction between surface of HDAC active site and HDAC inhibitor, improves HDAC inhibitory activity.  相似文献   

9.
The work presented here explores the structural and physicochemical features important for benzamide-based HDAC3 inhibitors to get an idea about the design aspect of potential inhibitors. A number of molecular modeling studies (3D-QSAR CoMFA and CoMSIA, Bayesian classification modeling) were performed on 113 diverse set of benzamide-based HDAC3 inhibitors. All these models developed are statistically reliable and correlate the SAR observations. Electron withdrawing substitution is favorable but the bulky hydrophobic group at the cap region reduces HDAC3 inhibition. Hydrophobicity and steric feature of the aryl linker function favor the activity. Aryl group substituted benzamide functionality is not favorable for HDAC3 inhibition. The amide function of the benzamide moiety is essential for Zn2+ chelation and the carboxylic acid function may serve as a hydrogen bond acceptor (HBA) feature. Moreover, electron withdrawing substituent at the benzamide moiety influences activity whereas steric and hydrophobic substituents reduce HDAC3 inhibition. Overall, this study may provide a valuable insight on the design of better active HDAC3 inhibitors in future.

Communicated by Ramaswamy H. Sarma  相似文献   


10.
Two prominent domains have been identified in the X-ray crystal structure of inosine-5'-monophosphate dehydrogenase (IMPDH), a core domain consisting of an alpha/beta barrel which contains the active site and an inserted subdomain whose structure is less well defined. The core domain encompassing amino acids 1-108 and 244-514 of wild-type human IMPDH (II) connected by the tetrapeptide linker Ile-Arg-Thr-Gly was expressed. The subdomain including amino acids 99-244 of human wild-type IMPDH (II) was expressed as a His-tagged fusion protein, where the His-tag was removable by enterokinase cleavage. These two proteins as well as wild-type human IMPDH (II), all proteins expressed in Escherichia coli, have been purified to apparent homogeneity. Both the wild-type and core domain proteins are tetrameric and have very similar enzymatic activities. In contrast, the subdomain migrates as a monomer or dimer on a gel filtration column and lacks enzymatic activity. Circular dichroism spectropolarimetry indicates that the core domain retains secondary structure very similar to full-length IMPDH, with 30% alpha-helix and 30% beta-sheet vs 33% alpha-helix and 29% beta-sheet for wild-type protein. Again, the subdomain protein is distinguished from both wild-type and core domain proteins by its content of secondary structure, with only 15% each of alpha-helix and beta-sheet. These studies demonstrate that the core domain of IMPDH expressed separately is both structurally intact and enzymatically active. The availability of the modules of IMPDH will aid in dissecting the architecture of this enzyme of the de novo purine nucleotide biosynthetic pathway, which is an important target for immunosuppressive and antiviral drugs.  相似文献   

11.
We have developed an efficient method for synthesizing candidate histone deacetylase (HDAC) inhibitors in 96-well plates, which are used directly in high-throughput screening. We selected building blocks having hydrazide, aldehyde and hydroxamic acid functionalities. The hydrazides were coupled with different aldehydes in DMSO. The resulting products have the previously identified ‘cap/linker/biasing element’ structure known to favor inhibition of HDACs. These compounds were assayed without further purification. HDAC8-selective inhibitors were discovered from this novel collection of compounds.  相似文献   

12.
Abstract

Inosine 5′-monophosphate dehydrogenase (IMPDH) is important molecular target for potential anticancer, antiviral, antibacterial and immunosuppressive agents. A lot of compounds were obtained to establish their activity toward this enzyme, and to improve therapeutic properties of IMPDH inhibitors used as the drugs. Some of the recently reported analogs exhibited promising results during in vitro and in vivo examinations in comparison to substances applied in clinic. In this review, we describe synthesis and biological activity evaluations of the newly designed IMPDH inhibitors.  相似文献   

13.
Largazole is a potent class I selective histone deacetylase (HDAC) inhibitor. The majority of largazole analogues to date have modified the thiazole–thiazoline and the warhead moiety. In order to elucidate class I-specific structure–activity relationships, a series of analogues with modifications in the valine or the linker region were prepared and evaluated for their class I isoform selectivity. The inhibition profile showed that the C2 position of largazole has an optimal steric requirement for efficient HDAC inhibition and that substitution of the trans-alkene in the linker with an aromatic group results in complete loss of activity. This data will aid the design of class I isoform selective HDAC inhibitors.  相似文献   

14.
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.  相似文献   

15.
A series of 1,3,4-thiadiazole-containing hydroxamic acids, in accord with the common pharmacophore of histone deacetylase (HDAC) inhibitors (a Zn2+ binding moiety–a linker–a surface recognition motif), was identified as submicromolar HDAC inhibitors by our group. In this study, we continued our efforts to develop 1,3,4-thiadiazole bearing hydroxamate analogues by modifying the surface recognition motif. We found that 1,3,4-thiadiazoles having a heteroaromatic substituent showed better HDAC inhibitory activity in enzymatic assay and higher antiproliferative potency in cellular assay compared to SAHA.  相似文献   

16.
Histone deacetylase (HDAC) inhibition is a recent, clinically validated therapeutic strategy for cancer treatment. Small molecule HDAC inhibitors identified so far fall in to three distinct structural motifs: the zinc-binding group (ZBG), a hydrophobic linker, and a recognition cap group. Here we report the suitability of a 1,2,3-triazole ring as a surface recognition cap group-linking moiety in suberoylanilide hydroxamic acid-like (SAHA-like) HDAC inhibitors. Using “click” chemistry (Huisgen cycloaddition reaction), several triazole-linked SAHA-like hydroxamates were synthesized. Structure–activity relationship revealed that the position of the triazole moiety as well as the identity of the cap group markedly affected the in vitro HDAC inhibition and cell growth inhibitory activities of this class of compounds.  相似文献   

17.
Mycophenolic acid (MPA, 1), an inhibitor of IMP-dehydrogenase (IMPDH) and a latent PPARgamma agonist, is used as an effective immunosuppressant for clinical transplantation and recently entered clinical trials in advanced multiple myeloma patients. On the other hand, suberoylanilide hydroxamic acid (SAHA), a non-specific histone deacetylase (HDAC) inhibitor, has been approved for treating cutaneous T-cell lymphoma. MPA seemed to bear a cap, a linker, and a weak metal-binding site as a latent inhibitor of HDAC. Therefore, the hydroxamic acid derivatives of mycophenolic acid having an effective metal-binding site, mycophenolic hydroxamic acid (MPHA, 2), 7-O-acetyl mycophenolic acid (7-O-Ac MPHA, 3), and 7-O-lauroyl mycophenolic hydroxamic acid (7-O-L MPHA, 4) were designed and synthesized. All these compounds inhibited histone deacetylase with IC50 values of 1, 0.9 and 0.5 microM, and cell proliferation at concentrations of 2, 1.5 and 1 microM, respectively.  相似文献   

18.
19.
Histone deacetylases (HDACs) are well-established, promising targets for anticancer therapy due to their critical role in cancer development. Accordingly, an increasing number of HDAC inhibitors displaying cytotoxic effects against cancer cells have been reported. Among them, a large panel of chemical structures was described including coumarin-containing molecules. In this study, we described synthesis and biological activity of new coumarin-based derivatives as HDAC inhibitors. Among eight derivatives, three compounds showed HDAC inhibitory activities and antitumor activities against leukemia cell lines without affecting the viability of peripheral blood mononuclear cells from healthy donors.  相似文献   

20.
Histone Deacetylases are considered promising targets for cancer epigenetic therapy, and small molecules able to modulate their biological function have recently gained an increasing interest as potential anticancer agents. In spite of their potential application in cancer therapy, most HDAC inhibitors unselectively bind the several HDAC isoforms, giving rise to different side-effects. In this context, we have traced out the structural elements responsible of selective binding for the therapeutically relevant different HDAC isoforms. The structural analysis has been carried out by molecular modeling, docking in the binding pockets of HDAC1–4 and HDAC6–8, 36 inhibitors presenting a well defined selectivity for the different isoforms. As quick proof of evidence, we have designed, synthesized and experimentally tested three selective ligands. The experimental data suggest that the obtained structural guidelines can be useful tools for the rational design of new potent inhibitors against selected HDAC isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号