首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
WAP-8294A2 is a cyclic peptide antibiotic with novel structure and excellent activity against Gram-positive pathogens. Herein, we report the total synthesis of complex macrocyclic peptide WAP-8294A2 (W1), ent-analogue W2, deoxy analogue W3 and de-methyl analogue W4 using a solid-phase synthetic route followed by a final stage solution-phase cyclization reaction. Exploitation of this process allowed the synthesis of eleven alanine-scanning analogues and eight lysine-scanning analogues. The antimicrobial activity of these analogues was evaluated in vitro against Gram-positive bacteria. Based on the MIC results, a primary systematic structure-activity relationship has been established.  相似文献   

2.
Innovative therapeutic heterocycles having precisely thiadiazolyl-pyranopyrazole fragments were prepared by using the ecofriendly synthetic route. Entire compounds formed in quantitative yields. All the composites tested for their antimicrobial effectiveness against four microbial, two beneficial fungi’s and accurately measured the minimum inhibitory concentrations (MIC and MBC/MFC), along with some initial structure activity relationships (SARs) also discussed. From the biological outcomes, the motif 6f provided an outstanding activity against all six pathogens. The possible presence of a nitro substituent on this composite may undoubtedly enhance the activity. In addition, amalgams 6d, 6g and 6l displayed promising antimicrobial results. This may be justified to the presence of electron capture group attached to the benzene ring, while the combinations 6j and 6k were zero effect towards all bacterial strains. The other compounds were excellent to low antimicrobial efficiency. The intriguing point was observed that all the active compounds had in common immense antibacterial effectiveness on Gram-negative bacteria than Gram-positive one and more antifungal activity on A. niger compare to other fungus. All things considered and suggested that this outstanding green synthetic approach is used to develop biological active compounds. On top of that, biological results confirmed that these biologically energetic motifs suitable for additional preclinical examine with the aim of standing novel innovative drugs.  相似文献   

3.
A series of 1H-benzo[d]imidazole analogues of Pimobendan, substituted at position 5 with either –CF3 or –NO2, were synthesized using a short synthetic route. All the nitro derivatives were potent, and exhibited a concentration- and partial endothelium-dependent vasorelaxant effects, with EC50s <5 μM. 2-Methoxy-4-[5-nitro-1H-benzo[d]imidazol-2-yl]phenol (compound 13) was the most potent derivative of the series, showing an EC50 value of 1.81 μM and Emax of 91.7% for ex vivo relaxant response in intact aortic rings, resulting in a 2.5-fold higher activity compared to Pimobendan. The closely related 5-CF3 analogue (compound 8), was 19 times less potent than 13. The antihypertensive activity of compound 13 was evaluated at doses of 25, 50 and 100 mg kg?1, using spontaneously hypertensive rats (SHR), showing a statistically significant dose-dependent effect.  相似文献   

4.
We have synthesized a new series of quinoline tripartite hybrids from chloroquine, ethambutol, and isoxyl drugs, using a short synthetic route. Compounds 18 were tested in vitro against five protozoa (Giardia intestinalis, Trichomonas vaginalis, Entamoeba histolytica, Leishmania mexicana and Trypanosoma cruzi) and Mycobacterium tuberculosis. N-(4-Butoxyphenyl)-N′-{2-[(7-chloroquinolin-4-yl)amino]ethyl}urea (6) was the most active compound against all parasites tested. Compound 6 was 670 times more active than metronidazole, against G. intestinalis. It was as active as pentamidine against L. mexicana, and it was twofold more potent than ethambutol and isoxyl versus M. tuberculosis. This compound could be considered as a new broad spectrum antimicrobial agent.  相似文献   

5.
A new synthetic route, involving acetylenic intermediates, has been developed for the preparation of the valine and isoleucine biosynthetic intermediates α-acetolactic acid (III) and α-aceto-α-hydroxybutyric acid (IV) including the optically active form of these labile acids. The absolute configuration of acetolactate methyl ester XV was confirmed as (R)-(?), and the configuration of XVI was also established as (R)-(?). Two trideuterio analogs of acetolactate were prepared by this route. The acetolactate anion was found to undergo a rapid room-temperature degenerate rearrangement resulting in racemization and methyl interchange. The isomeroreductase of Salmonella typhimurium was found to be specific for the (S) enantiomers of III and IV, allowing conclusions about the conformation of IV during the ethyl migration step in isoleucine biosynthesis. Acetolactate decarboxylase of Acidobacterium aerogenes was found to decarboxylate specifically the (S) enantiomers of III and IV, forming (?)-acetoin from III with inversion of configuration.  相似文献   

6.
Polyozellin is a p-terphenyl compound which was isolated from Polyozellus multiplex, and exhibits an inhibitory activity against prolyl oligopeptidase (POP). Its structure was assigned as 1 having a p-terphenyl skeleton including a p-substituted dibenzofuran moiety by spectroscopic analyses and chemical means. This paper describes the total syntheses of the proposed structure 1 for polyozellin and its o-isomer 2, revising the structure of polyozellin to the latter. These syntheses involved a double Suzuki-Miyaura coupling using chlorophenylboronic acid as a common key building block, and Cu mediated Ullmann cyclization as key steps. The inhibitory activities of synthetic compounds against POP and cancer cells were also evaluated.  相似文献   

7.
Herein, we report a library consisting of some novel glitazones containing thiazolidinedione and its bioisosteres, rhodanine and oxadiazolidine ring structures as their basic scaffold for their antidiabetic activity. Twelve novel glitazones with diverse chemical structures were designed and synthesized by adopting appropriate synthetic schemes and analyzed. Later, subjected to in vitro glucose uptake assay in the absence and presence of insulin to confirm their antidiabetic activity using rat hemi-diaphragm. The titled compounds exhibited glucose uptake activity ranging weak to significant activity. Compounds 4, 5, 9, 11, 15, 16, 19 and 20 showed considerable glucose uptake activity apart from rosiglitazone, a standard drug. Compound 16 happens to be the candidate compound from this study to investigate further. The illustration about their design, synthesis, analysis and glucose uptake activity is reported here along with the in vitro and in silico study based structure–activity relationships.  相似文献   

8.
Labdane analogs with o-quinol, catechol and hydroquinone moiety have been synthesized using Diels–Alder reaction of methyl 3,4-dioxocyclohexa-1,5-diene-carboxylate, 3,4-dioxocyclohexa-1,5-diene-carboxylic acid and 3,6-dioxocyclohexa-1,4-dienecarboxylic acid with mono terpene 1,3-dienes, namely ocimene and myrcene. The resulting molecules and their derivatives were evaluated for their anti-HIV-1 activity using TZM-bl cell based virus infectivity assay. Two molecules 13 and 18 showed anti-HIV activity with IC50 values 5.0 (TI = 11) and 4.6 (TI = 46) μM, respectively. The compounds 17, 18 and 20 showed efficacy against HIV-1 integrase activity and showed inhibition with IC50 13.4, 11.1 and 11.5 μM, respectively. The HIV-1 integrase inhibition activity of these synthetic molecules was comparable with integric acid, the natural fungal metabolite. Molecular modeling studies for the HIV-1 integrase inhibition of these active synthetic molecules indicated the binding to the active site residues of the enzyme.  相似文献   

9.
In this study we report the synthesis, characterization, biological evaluation, and druglikeness assessment of a series of 20 novel isoxazolyl-sulfonamides, obtained by a four-step synthetic route. The compounds had their activity against Trypanosoma cruzi, Leishmania amazonensis, Herpes Simplex Virus type 1 and cytotoxicity evaluated in phenotypic assays. All compounds have drug-like properties, showed low cytotoxicity and were promising regarding all other biological activities reported herein, especially the inhibitory activity against T. cruzi. The compounds 8 and 16 showed significant potency and selectivity against T. cruzi (GI50?=?14.3?µM, SI?>?34.8 and GI50?=?11.6?µM, SI?=?29.1, respectively). These values, close to the values of the reference drug benznidazole (GI50?=?10.2?µM), suggest that compounds 8 and 16 represent promising candidates for further pre-clinical development targeting Chagas disease.  相似文献   

10.
A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L = Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.  相似文献   

11.
Benzohydrazide derivatives 143 were synthesized via “one-pot” reaction and structural characterization of these synthetic derivatives was carried out by different spectroscopic techniques such as 1H NMR and EI-MS. The synthetic molecules were evaluated for their in vitro urease inhibitory activity. All synthetic derivatives showed good inhibitory activities in the range of (IC50 = 0.87 ± 0.31–19.0 ± 0.25 µM) as compared to the standard thiourea (IC50 = 21.25 ± 0.15 µM), except seven compounds 17, 18, 23, 24, 29, 30, and 41 which were found to be inactive. The most active compound of the series was compound 36 (IC50 = 0.87 ± 0.31 μM) having two chloro groups at meta positions of ring A and methoxy group at para position of ring B. The structure–activity relationship (SAR) of the active compounds was established on the basis of different substituents and their positions in the molecules. Kinetic studies of the active compounds revealed that compounds can inhibit enzyme via competitive and noncompetitive modes. In silico study was also performed to understand the binding interactions of the molecules (ligand) with the active site of enzyme.  相似文献   

12.
Earlier it was found, that (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol (1) possess high antiparkinsonian activity. The N-, O-, S- and C-derivatives at the C-9 position of diol 1 were synthesized in this work. The antiparkinsonian activity of these compounds was studied in MPTP mice models. As a rule, the introduction of substituents containing nitrogen atoms at the C-9 position led to a considerable decrease or loss of antiparkinsonian activity. A derivative of 2-aminoadamantane 8 significantly decreased the locomotor activity time, thus enhancing the symptoms of the parkinsonian syndrome. However the introduction of butyl or propylthio substituents at the C-9 position of diol 1 did not diminish the antiparkinsonian activity comparing to parent compound. This information is important when choosing a route for immobilization of compound 1 to find possible targets.  相似文献   

13.
We have developed a facile and efficient synthetic route to substituted isochromans for the first time by reacting 2-(2-bromoethyl)benzaldehyde with a variety of aryl, heteroaryl amines in AcOH. The reaction is catalyst/additive free and takes place at reflux conditions with short reaction time to furnish products in good to excellent yields. All the compounds have been characterized by spectral techniques such as IR, 1H NMR and Mass etc. Synthesized compounds were evaluated for antimicrobial activity against specific bacterial like 1) Staphylococcus strains aureus 2) Bacillus subtilis 3) Escherichia coli 4) Pseudomonas aeruginosa. Compounds 3e, 3n, 3?m, 3?l, 3?k, 3j and 3b showed most potent in vitro activity against bacterial strains.  相似文献   

14.
Described here is the asymmetric synthesis of iminosugar 2b, a Lipid II analog, designed to mimic the transition state of transglycosylation catalyzed by the bacterial transglycosylase. The high density of functional groups, together with a rich stereochemistry, represents an extraordinary challenge for chemical synthesis. The key 2,6-anti- stereochemistry of the iminosugar ring was established through an iridium-catalyzed asymmetric allylic amination. The developed synthetic route is suitable for the synthesis of focused libraries to enable the structure–activity relationship study and late-stage modification of iminosugar scaffold with variable lipid, peptide and sugar substituents. Compound 2b showed 70% inhibition of transglycosylase from Acinetobacter baumannii, providing a basis for further improvement.  相似文献   

15.
A general and efficient route towards the synthesis of three derivatives of structurally and functionally important amino acid, lysine is reported. Chemoselective reduction of aldehydic functionality in C-3-azido conjugated aldehyde 4, under Luche condition, is the key step in the synthetic sequence. The lysine derivative, (2S,3R)-2,6-diazido-3-hydroxy-hex-4-ene-oic acid 9 could be used to prepare switch peptide using Staudinger reaction, while the unprotected (2S,3R)-2,6-diamino-3-hydroxy-hexanoic acid hydrochloride 10 is a proven reaction intermediate towards the synthesis of natural product (?)-Balanol.  相似文献   

16.
A series of N-methyl rac-cis-4a-aralkyl- and alkyl-substituted-1,2,3,4,4a,9a-hexahydrobenzofuro[2,3-c]pyridin-6-ols have been prepared (2al) using a simple previously designed synthetic route, in order to find a ligand that would interact with both μ- and δ-opioid receptors. A C4a-phenethyl derivative 2a, was found to have modest receptor affinity both at μ- (Ki = 60 nM) and δ-opioid receptors (Ki = 64 nM). The N-methyl substituent of 2a and that of other ligands in the series was then modified to obtain compounds with different N-substituents that might provide higher affinity at both receptors. A number of compounds differently substituted at C4a and N were synthesized and evaluated. Binding studies and functional assays revealed a moderately selective δ-antagonist (2l), selective μ–δ antagonists (3d, 3g), and a μ–κ antagonist (3f).  相似文献   

17.
As part of our ongoing efforts to identify compounds having potential utility in treating neurodegenerative and mitochondrial disorders, a series of pyridinol analogues have been prepared. The synthetic route employed for the preparation of the new analogues is different, and considerably more efficient, than that used in previously reported studies. The new route yields a pair of pyridinol regioisomers that can be readily separated and evaluated. Their ability to quench lipid peroxidation and reactive oxygen species (ROS), and to preserve mitochondrial membrane potential (Δψm) and support ATP synthesis is reported. The optimal side chain length was found to be 16 carbon atoms. The metabolic stability of those compounds having optimal biological activities was evaluated in vitro using bovine liver microsomes. The omission of any side chain hydroxyl group and introduction of an azetidine moiety at position 6 of the pyridinol redox core (8 and 9) increased their microsomal stability as compared to the exocyclic dimethylamino group. The favorable metabolic stability conferred by the azetidine moiety in compounds 8 and 9 makes these compounds excellent candidates for further evaluation.  相似文献   

18.
The effort was taken to develop a series of benzothiazole and quinoline fused bioactive compounds obtained through a four-step synthetic route using a range of substituted acetoacetanilides. Achieved N-(benzo[d]thiazol-2-yl)-2-hydroxyquinoline-4-carboxamides (6a-l) were produced up to 96% of yield while the eco-friendly p-TSA used as a catalyst. Further, the anticancer activity of these compounds was determined using a range of cancer cell lines starting from MCF-7 (Breast cancer), HCT-116 (Colon cancer), PC-3 & LNCaP (Prostate) and SK-HEP-1 (Liver cancer). Present study compounds were also testified for antioxidant properties prior to anticancer studies since the Reactive Oxygen Species (ROS) being vital in cancer development. To determine the cell membrane stability effects of the compounds, human red blood cells (HRBC) based membrane protection assay was determined. In the results, compounds 6a-l were able to produce a dominated result values over PC3 cell lines (Prostate cancer) than the other cell lines used in this study. Since the connectivity of human germ cell alkaline phosphatase (hGC-ALP) in the development of prostate cancer is known, the most active compounds were evaluated for the hGC-ALP inhibition in order to ensure a mechanism of anticancer action of these compounds. The mode of interaction and binding affinity of these compounds was also investigated by a molecular docking study. In the results, 6d, 6i, 6k, and 6l were found with least IC50 values <0.075 µM and highest relative activity of 92%, 90%, and 96% respectively. The need for further animal model evaluation and pre-clinical studies recognized.  相似文献   

19.
A tetrazole isosteric analogue of clofibric acid (1) was prepared using a short synthetic route and was characterized by elemental analysis, NMR (1H, 13C) spectroscopy, and single-crystal X-ray diffraction. The in vitro inhibitory activity of 1 against 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) was evaluated, showing a moderate inhibitory enzyme activity (51.17% of inhibition at 10 μM), being more active than clofibrate and clofibric acid. The antidiabetic activity of compound 1 was determined at 50 mg/Kg single dose using a non insulin dependent diabetes mellitus rat model. The results indicated a significant decrease of plasma glucose levels, during the 7 h post-administration. Additionally, we performed a molecular docking of 1 into the ligand binding pocket of one subunit of human 11β-HSD1. In this model, compound 1 binds into the catalytic site of 11β-HSD1 in two different orientations. Both of them, show important short contacts with the catalytic residues Ser 170, Tyr 183, Asp 259 and also with the nicotinamide ring of NADP+.  相似文献   

20.
Homocamptothecins (hCPTs) represents a new promising class of topoisomerase I inhibitors with enhanced stability and superior antitumor activity. Some phosphodiesters and phosphotriesters homocamptothecin derivatives were designed and synthesized based on our previous synthetic route. The cytotoxicity in vitro on three cancer cell lines and antitumor activity in vivo, and inhibitory properties of topoisomerase I of these derivatives were evaluated. Among them compounds 24e and 24f exhibited higher cytotoxic activity than IRT and the former exhibited the best antitumor activity in vivo and solution stability both at pH 7.4 and pH 3.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号