首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 2-arylbenzimidazole derivatives (3a3p and 4a4i) were synthesized and evaluated as potential antioxidant and antimicrobial agents. Their antioxidant properties were evaluated by various in vitro assays including hydroxyl radical (HO) scavenging, superoxide radical anion (O2?) scavenging, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, and ferric reducing antioxidant power. Results demonstrated that compounds with hydroxyl group at the 5-position of benzimidazole ring had a comparable or better antioxidant activity in comparison to standard antioxidant tert-butylhydroquinone (TBHQ). Markedly, compound 4h that showed the highest HO scavenging activity (EC50 = 46 μM) in vitro had a significant reduction of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced intracellular oxidative stress and H2O2-induced cell death. In addition, these compounds showed moderate to good inhibitory activity against Staphylococcus aureus selectively at noncytotoxic concentrations.  相似文献   

2.
3.
The aim of the study is the determination of antioxidant and antiproliferative activities of fungal isolates’ metabolites belonging to Penicillium flavigenum isolated from Lake Tuz, Turkey. Evaluation of the antioxidant activity, the total phenolic content and antiproliferative effect were evaluated with DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, Folin-ciocalteu method, Xcelligence real-time cell analysis. The total phenolic content of these isolates were found 62–82 mg/GAE. Ethyl acetate extracts from identified isolates, P. flavigenum, showed cytotoxic effects on A549, MCF7, Caco-2 cell lines. IC50 values of P. flavigenum ethyl acetate extracts were found 96.7 μg/mL for A549, 33.4 μg/mL for MCF7, 43.4 μg/mL for Caco-2 and 97.3 μg/mL for 3T3. Phenolic acids in the extracts from P. flavigenum were identified with HPLC and GC-MS. Penicillium flavigenum is a new report for Turkey. According to these findings, fungi-related secondary metabolites are very important sources in terms of antioxidant and antiproliferative effects.  相似文献   

4.
Six 1,2,4-oxadiazole derivatives were prepared in order to compare their abilities to protect DNA against radical-mediated oxidation and to scavenge radicals. These derivatives had a structure based on disubstituted 1,2,4-oxadiazole, in which a vanillin group (A ring) and a substituted benzene group (B ring) were the substituents. The functional group at B ring was assigned as ortho- or meta-hydroxylbenzene group, ortho-chlorobenzene group, no group contained, and pyridine group or vanillin group at B ring. It was found that the compound with two vanillin groups attaching to oxadiazole can trap 2.05 radicals in protecting DNA against 2,2′-azobis(2-amidinopropane hydrochloride) (AAPH)-induced oxidation, and the compound with an ortho-hydroxylbenzene group at B ring can trap 1.78 radicals. The compound with an ortho-chlorobenzene group at B ring exhibited the highest ability to inhibit ·OH-induced oxidation of DNA, while the compound with a meta-hydroxylbenzene group at B ring inhibited Cu2+/glutathione (GSH)-induced oxidation of DNA efficiently. The ortho- and para-hydroxylbenzene groups at B ring made the compounds possess the highest rate constant (k) in scavenging 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS+.) and 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH). Therefore, only a few hydroxyl groups can markedly enhance the activity of the core-branched antioxidant, which may be a novel structural feature in designing antioxidant.  相似文献   

5.
Three saponins, including two dimeric triterpenoid glucosides possessing an unusual skeleton, ivorenosides A and B, and a monomeric triterpenoid saponin (ivorenoside C), together with the known sericoside, were isolated from the bark of Terminalia ivorensis. Their structures were established on the basis of 1D and 2D NMR data, chemical methods and tandem MS–MS spectrometry as a dimer of β-d-glucopyranosyl-18,19-seco-2α,3β,19,19,24-pentahydroxyolean-12-en-28-oate and β-d-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside A, 1), a dimer of β-d-glucopyranosyl-18,19-seco-24-carboxyl-2α,3β,19,19-tetrahydroxyolean-12-en-28-oate and β-d-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside B, 2) and β-d-glucopyranosyl-2α,3β,19β,24-tetrahydroxyolean-11-oxo-olean-12-en-28-oate (ivorenoside C, 3). Ivorenosides A and B are the first examples in nature of dimeric triterpenoid saponins with a 18,19-seco E ring of one of the two units. These isolated compounds were evaluated for their antioxidant properties and further for their cytotoxic activity against four human cancer cell lines. Ivorenoside B and C exhibited scavenging activity against DPPH and ABTS+ radicals with IC50 values comparable with that of the standard drug Trolox and ivorenoside A showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC50 values of 3.96 and 3.43 μM, respectively.  相似文献   

6.
Phenylalkylamines (PAAs), a major class of L-type calcium channel (LTCC) blockers, have two aromatic rings connected by a flexible chain with a nitrile substituent. Structural aspects of ligand-channel interactions remain unclear. We have built a KvAP-based model of LTCC and used Monte Carlo energy minimizations to dock devapamil, verapamil, gallopamil, and other PAAs. The PAA-LTCC models have the following common features: (i) the meta-methoxy group in ring A, which is proximal to the nitrile group, accepts an H-bond from a PAA-sensing Tyr_IIIS6; (ii) the meta-methoxy group in ring B accepts an H-bond from a PAA-sensing Tyr_IVS6; (iii) the ammonium group is stabilized at the focus of P-helices; and (iv) the nitrile group binds to a Ca2+ ion coordinated by the selectivity filter glutamates in repeats III and IV. The latter feature can explain Ca2+ potentiation of PAA action and the presence of an electronegative atom at a similar position of potent PAA analogs. Tyr substitution of a Thr in IIIS5 is known to enhance action of devapamil and verapamil. Our models predict that the para-methoxy group in ring A of devapamil and verapamil accepts an H-bond from this engineered Tyr. The model explains structure-activity relationships of PAAs, effects of LTCC mutations on PAA potency, data on PAA access to LTCC, and Ca2+ potentiation of PAA action. Common and class-specific aspects of action of PAAs, dihydropyridines, and benzothiazepines are discussed in view of the repeat interface concept.L-type calcium channels (LTCCs)2 are targets for different drugs. Benzo(thi)azepines (BTZs), dihydropyridines (DHPs), and phenylalkylamines (PAAs) constitute the three major classes of the LTCC ligands (for reviews, see Refs. 1 and 2). All of these ligands bind to overlapping binding sites in the pore-forming domain of the α1 subunit, but each class demonstrates unique characteristics of action. Depending on their chemical structure, DHPs act as agonists or antagonists (3). All known PAAs and BTZs are antagonists, but they have different access pathways to their binding sites: external for BTZs (4, 5) and predominantly internal for PAAs (6). Clinical use of verapamil in treatments of hypertension and arrhythmias (7) had stimulated intensive electrophysiological, mutational, and pharmacological studies involving PAAs.The pore-forming domain of LTCC includes the pore-lining inner helices S6, the outer helices S5, and the P-loops from all four repeats of the α1 subunit. According to mutational analyses, the PAA-binding site is located in the interface between repeats III and IV. In particular, residues in transmembrane helices IIIS5, IIIS6, and IVS6 and P-loops of repeats III and IV contribute to binding of PAAs (814).Structure-activity relationships of PAAs were intensively studied (1517). A common feature of potent PAAs is the presence of two methoxylated aromatic rings (named A and B). The rings are connected by a flexible alkylamine chain with a nitrile and an isopropyl group at the chiral tetrasubstituted carbon atom, which is proximal to ring A. Ring B is proximal to the amino group (see Fig. 1).Open in a separate windowFIGURE 1.Structural formulae of PAAs.Despite the fact that some specific contacts between functional groups of PAAs and PAA-sensing residues (residues that, when mutated, affect action of PAAs) have been proposed (10, 14), the flexibility of the ligands did not allow the characterization of the binding mode and the general pattern of ligand-channel interactions. In the absence of such knowledge, it is hardly possible to provide a molecular basis for structure-activity relationships. The problem is further complicated by the dependence of PAA action on the functional state of the channel, the ionic environment, the transmembrane voltage, and other factors. For example, it is generally believed that PAAs bind to the open/inactivated channels with higher affinities than to the closed state (for review, see Ref 1). However, the molecular basis for this state dependence is unclear.Lipkind and Fozzard (18) docked devapamil in a KcsA-based homology model of the L-type Ca2+ channel. They suggested an angular conformation of the drug, with ring B extended into the III/IV repeat interface and ring A in the central cavity. They also suggested that the protonated amino group of devapamil interacts directly with the selectivity filter glutamates. This model explains the effect of some mutations, particularly those in the P-loops and IVS6. However, other important aspects of PAA action such as the role of the nitrile group, the Ca2+ potentiation effect, and the effects of mutations in IIIS6 and IIIS5 remain unexplained.The gap between the amount of experimental data on PAA action and the level of understanding of the atomic level mechanisms necessitates further studies. In the absence of x-ray structures of Ca2+ channels, molecular modeling is the only available approach to address the structural aspects of PAA-LTCC interactions. Recently, we proposed molecular models for the action of other classes of L-type channel ligands. In the BTZ-LTCC models (19), the main body of the ligands binds in the repeat interface, whereas the amino group protrudes into the inner pore, where it is stabilized by nucleophilic C-terminal ends of the pore helices. In the DHP-LTCC models (20), the ligands also bind in the interface between repeats III and IV, whereas the moieties that differ between agonist and antagonists extend to the pore. Both models suggest direct interactions between the ligands and a Ca2+ ion bound to the selectivity filter glutamates in repeats III and IV.In this work, we elaborate molecular models for PAA·LTCC complexes that agree with a large body of experimental data. We further discuss common and different aspects of action of different ligands on LTCC and propose that certain aspects of the ligand action may be relevant to other P-loop channels.  相似文献   

7.
8.
The mineralization of aromatic compounds by microorganisms relies on a structurally and functionally diverse group of ring-cleaving enzymes. The recently discovered benzoate oxidation pathway in Burkholderia xenovorans LB400 encodes a novel such ring-cleaving enzyme, termed BoxC, that catalyzes the conversion of 2,3-dihydro-2,3-dihydroxybenzoyl-CoA to 3,4-dehydroadipyl-CoA without the requirement for molecular oxygen. Sequence analysis indicates that BoxC is a highly divergent member of the crotonase superfamily and nearly double the size of the average superfamily member. The structure of BoxC determined to 1.5 Å resolution reveals an intriguing structural demarcation. A highly divergent region in the C terminus probably serves as a structural scaffold for the conserved N terminus that encompasses the active site and, in conjunction with a conserved C-terminal helix, mediates dimer formation. Isothermal titration calorimetry and molecular docking simulations contribute to a detailed view of the active site, resulting in a compelling mechanistic model where a pair of conserved glutamate residues (Glu146 and Glu168) work in tandem to deprotonate the dihydroxylated ring substrate, leading to cleavage. A final deformylation step incorporating a water molecule and Cys111 as a general base completes the formation of 3,4-dehydroadipyl-CoA product. Overall, this study establishes the basis for BoxC as one of the most divergent members of the crotonase superfamily and provides the first structural insight into the mechanism of this novel class of ring-cleaving enzymes.Aromatic compounds comprise approximately one-quarter of the earth''s biomass (1) and are the second most abundant natural product next to carbohydrates. The majority of aromatic compounds in the environment are in the form of the organic polymer lignin that plays a structural role in cross-linking cell wall polysaccharides in plants. Despite the inherent thermostability of the aromatic ring, these naturally occurring compounds are efficiently mineralized by various microorganisms. Human-made aromatic compounds, such as those used in industrial processes, however, are often recalcitrant to microbial degradation due to their chemical complexity, decreased bioavailability, and increased thermostability. Moreover, bacteria have only been exposed to these compounds for a relatively short period of time. As a result, these compounds persist in the environment, where they can increase to toxic levels and cause irreversible damage to the biosphere.The common structural blueprint shared by natural and human-made aromatic compounds is the resonance-stabilized planar ring system. Microorganisms overcome the stability of these aromatic structures by employing specific ring-cleaving enzymes that form part of complex catabolic pathways. Until recently, two general classes of microbial processes were characterized that catalyze the degradation of aromatic compounds. These classifications, termed the aerobic and anaerobic pathways, were based primarily on the mode of initial activation and subsequent cleavage of the aromatic ring. The aerobic pathway, exemplified by the peripheral biphenyl and the central ben-cat pathway, relies on the extensive use of molecular oxygen for both the hydroxylation (activation) and cleavage of the aromatic ring (24). The anaerobic pathway, however, mediates a reductive dearomatization followed by a hydrolytic ring cleavage, as observed in the classical benzoate pathway (57). In both cases, the underlying mechanism incorporates an activation step that renders the ring susceptible to cleavage.Recently, a third aromatic degradation pathway was identified in Burkholderia xenovorans strain LB400 (LB400) (810) and Azoarcus evansii (1113). This novel pathway, termed the box (benzoate oxidation) pathway, incorporates features of both the aerobic and anaerobic pathways, resulting in a hybrid pathway. Microarray analysis of the 9.7-Mb genome of LB400 revealed two paralogous copies of the box pathway, one encoded on chromosome 1 (boxc) and the second on the megaplasmid (boxm) (9). Knock-out studies confirm that both box pathways are capable of assimilating benzoate (10) yet are differentially regulated based on available carbon source and growth phase of the organism (9). Recent structural and biochemical characterization of benzoate CoA ligase (14) and aldeheyde dehydrogenase (15) from the box pathway in LB400 have provided valuable insight into the basis of substrate specificity and details describing the molecular mechanisms.A unique feature of the hybrid box pathway is the incorporation of both CoA ligation and hydroxylation prior to ring cleavage (16), suggesting that both strategies are important for ring activation. It is noteworthy that although CoA ligation is common in the activation of aromatic acids under anaerobic conditions, it has thus far been unseen in the aerobic degradation of aromatic compounds. Furthermore, investigation of the box pathway intermediates from the related A. evansii demonstrated that the thioesterified dihydrodiol intermediate was not oxidized and rearomatized as normally occurs in aerobic aromatic metabolism (11). Instead, it was shown to be directly cleaved without the requirement of molecular oxygen in a reaction that resulted in the loss of one unit of carbon and oxygen as formate (11). This critical ring cleavage step in the box pathway is catalyzed by BoxC (2,3-dihydro-2,3-dihydroxybenzoyl-CoA lyase/hydrolase) (11), which differs from traditional aerobic and anaerobic ring-cleaving enzymes in that oxygen is not used in catalysis, and the ring substrate is only partially reduced. Based on sequence analysis, BoxC is assigned to the crotonase superfamily. The cleavage reaction catalyzed by BoxC, however, suggests that BoxC defines a new mechanistic niche and intriguingly is one of the four outstanding crotonase superfamily members for which no structural information exists (17).A mechanism for BoxC from A. evansii was recently proposed based on the identification of chemical species using NMR and mass spectrometry (11). In the absence of structural information of BoxC, however, the mechanistic details, including the identity of the catalytic residues, remain undefined. To investigate the detailed molecular mechanism of BoxC, we carried out a structural and biophysical analysis complemented with molecular docking. The resulting data provide a compelling mechanistic model with the identification of key catalytic residues and active site structure that stabilize proposed transition state intermediates. Furthermore, the 1.5 Å resolution structure of BoxC reveals intriguing divergent architectural features with respect to other members of the crotonase superfamily. Overall, this study provides the first structural characterization of the novel BoxC family of enzymes and is interpreted with respect to the proposed molecular mechanism and divergence within the crotonase superfamily.  相似文献   

9.
10.
11.
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (?)-epigallocatechin gallate (EGCG), (?)-epigallocatechin (EGC), and (?)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O2?) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O2? oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O2? oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.  相似文献   

12.
Several studies indicated that bifidobacteria possessed strong antioxidant activity. In present study, the antioxidant activities of Bifidobacterium animalis 01 proteins were evaluated using six assays, namely, linoleic acid preoxidation assay, erythrocyte hemolysis assay, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, reducing power assay, hydroxyl (OH) and superoxide radicals (O2?) assays, in which the last two assays were measured by electron spin resonance (ESR). There were two kinds of B. animalis 01 proteins in this study, the regular B. animalis 01 protein (Pro-CK) and the B. animalis 01 selenium-contained protein (Pro-Se). Both Pro-CK and Pro-Se showed concentration dependent antioxidant activity in DPPH assay, reducing power assay and erythrocyte hemolysis assay. All results of six assays indicated that the antioxidant activity of the B. animalis 01 protein was improved remarkably after selenium was incorporated. The antioxidant activity of Pro-Se increased with the increase of selenium content in Pro-Se suggesting selenium played a positive role in enhancing the antioxidant activity of B. animalis 01 protein. Moreover, organic selenium was more effective than inorganic selenium on enhancing the hydroxyl radical scavenging ability of B. animalis 01 protein.  相似文献   

13.
The objectives of this study were to determine phenolic content and antioxidant activities of chloroform, acetone, methanol and hot water extracts of Bauhinia vahlii leaves. The hot water extract afforded the highest yield (6.3%) while the lowest yield was obtained from the chloroform extract (2.1%). The methanol extract contains higher levels of total phenolics (48.7 ± 0.7 g GAE/100 g extract), tannins (21.7 ± 0.7 g GAE/100 g extract) and flavonoids (10.3 ± 0.2 RE/100 g extract). The extracts were subjected to assess their antioxidant potential using various in vitro systems such as DPPH, ABTS+, FRAP, OH, β-carotene linoleic acid bleaching system, phosphomolybdenum reduction and Fe2+ chelation. It is concluded that the methanolic extract of B. vahlii leaves have strong antioxidant potential. Further study is necessary for isolation and characterization of the active antioxidants, which may serve as a potential source of natural antioxidants.  相似文献   

14.
15.
16.
A series of thirteen novel 2,4-thiazolidinedione derivatives were synthesized through three step reaction procedure. The title compounds were synthesized by Knoevenagel condensation at the 5th position of the 2,4-thiazolidinedione ring. Various physicochemical and spectral studies were conducted to characterize the synthesized derivatives including- IR, Mass, 1H NMR, 13C NMR and elemental analysis. The derivatives were screened for in vivo anti diabetic, in vivo anti-inflammatory and in vitro free radical scavenging activities by carrageenan induced rat paw edema method, alloxan induced diabetes in wistar rats method and FRAP (ferric reducing antioxidant power) method respectively. Some of the derivatives emerged out as potent antidiabetic, anti inflammatory and free radical scavenging agents. Molecular docking was carried out to investigate some possible structural insights into the potential binding patterns of the most potent anti-diabetic molecules NB7,NB12 and NB13 with the active sites of target PPARγ (PDB ID: 2PRG) using MOE software. Dichloro derivative compound NB-7 has shown great potential in the present study as it not only has maximum antidiabetic activity but also possess excellent anti-inflammatory and antioxidant potential.  相似文献   

17.
Two series of sulfonylpiperazines linked [1,3]dioxolo[4,5-g]chromenones were synthesized featuring phenyl (7a-k) and chalcone (12a-k) bridge representing flavones or homoisoflavonoids core. New molecules are synthesized utilizing aldol condensation to inspect as antioxidants against DPPH and ABTS+ and antiproliferative agents toward selected human cancer cell lines. Cytotoxicity of new compounds was confirmed using SRB assay against non-cancer MDCK cell line. The results concluded that both individual structures of 7 and 12 were vital for modulating pharmacological potencies and presence of different electron withdrawing and electron donating functional group(s) on the phenylsulfonyl entity yielded varied biological effects. Substituent h (OCF3) and j, k (OCH3) were found to play a crucial role scavenging DPPH and ABTS+ as well as inhibiting cancer cell lines SK-OV-3 and HT-29. Moreover, molecules bearing halogen atom(s) such as substituent b-g expressed excellent inhibitory potential against HeLa and A-549 cancerous cell lines. Bioassay data displayed some interesting structure-activity relationships which are discussed in this paper. The results justified that tested derivatives are promising antioxidants and cytotoxic agents and warrant further structural optimization and bioassay studies. Spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR and elemental analysis (CHN) were carried out to confirm the final structures.  相似文献   

18.
《Phytomedicine》2014,21(5):740-744
To investigate Nigella sativa oil (NSO) and Thymoquinone (TQ) for their antioxidant effects on the brain tissue of rats exposed to ionizing radiation.Fifty-four male albino Wistar rats, divided into six groups, were designed as group I (normal control group) did not receive NSO, TQ or irradiation; group II (control group of TQ) received dimethyl sulfoxide and sham irradiation; group III (control group of NSO) received saline and sham irradiation; group IV (irradiation plus NSO group) received both 5 Gray of gamma irradiation to total cranium and NSO; group V (irradiation plus TQ group) received both irradiation and TQ; group VI (irradiation alone group) received irradiation plus saline. Alterations in nitric oxide (NO) and peroxynitrite (ONOO) levels, and nitric oxide synthase (NOS) enzyme activity were measured by biochemical methods in homogenized brain tissue of rats.Levels of NO and ONOO, and enzyme activity of NOS in brain tissue of the rats treated with NSO or TQ were found to be lower than in received IR alone (p < 0.002)Nigella sativa oil (NSO) and its active component, TQ, clearly protect brain tissue from radiation-induced nitrosative stress.  相似文献   

19.
A novel 2-(aryl)-6-morpholin-4-yl(or 4-methylpiperazin-1-yl)-1H-benzimidazole derivatives were designed and expeditiously synthesized starting from 5-morpholin-4-yl(or 4-methylpiperazin-1-yl)-2-nitroaniline with various aldehydes which were preliminarily screened for in vitro antioxidant activities and glucosidase inhibitors. The benzimidazoles were effectively synthesized by a rapid ‘onepot’ nitro reductive cyclization reaction using sodium hydrosulfite as a reagent. All reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. Antioxidant activities of the synthesized compounds were clarified using various in vitro antioxidant assays including Cupric Reducing Antioxidant Capacity (CUPRAC, ranging from 5.511 to 19.703 mM Trolox/mg compound) and Ferric Reducing Antioxidant Power (FRAP) (1.141–12.943 mM FeSO4·7H2O/mg compound) assays. Also, the radical scavenging activities of these compounds were assayed using ABTS+ and DPPH methods. The results showed that all compounds exhibited very high scavenging activity. These synthesized compounds were then evaluated for their α-glucosidase inhibitory potential and seven compounds demonstrated an inhibitory potential much better than the standard acarbose. Herein, we will provide details of the structure activity relationship of the benzimidazole analog for the potency.  相似文献   

20.
A series of 1,5-disubstituted tetrazole-tethered combretastatin analogues with extended hydrogen-bond donors at the ortho-positions of the aryl A and B rings were developed and evaluated for their antitubulin and antiproliferative activity. We wanted to test whether intramolecular hydrogen-bonding used as a conformational locking element in these analogues would improve their activity. The correlation of crystal structures with the antitubulin and antiproliferative profiles of the modified analogues suggested that hydrogen-bond-mediated conformational control of the A ring is deleterious to the bioactivity. In contrast, although there was no clear evidence that intramolecular hydrogen bonding to the B ring enhanced activity, we found that increased substitution on the B ring had a positive effect on antitubulin and antiproliferative activity. Among the various analogues synthesized, compounds 5d and 5e, having hydrogen-bonding donor groups at the ortho and meta-positions on the 4-methoxy phenyl B ring, are strong inhibitors of tubulin polymerization and antiproliferative agents having IC50 value in micromolar concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号