首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rho kinase (ROCK) inhibitors are potential therapeutic agents for the treatment of a variety of disorders including hypertension, glaucoma and erectile dysfunction. Here we disclose a series of potent and selective ROCK inhibitors based on a substituted 7-azaindole scaffold. Substitution of the 3-position of 7-azaindole led to compounds such as 37, which possess excellent ROCK inhibitory potency and high selectivity against the closely related kinase PKA.  相似文献   

2.
The profile of a series of triazine and pyrimidine based ROCK inhibitors is described. An initial binding mode was established based on a homology model and the proposed interactions are consistent with the observed SAR. Compounds from the series are potent in a cell migration assay and possess a favorable kinase selectivity. In vivo activity was demonstrated for compound 1A in a spontaneous hypertensive rat model.  相似文献   

3.
A novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.  相似文献   

4.
Herein, we report the discovery of a series of thieno[2,3-d]pyrimidin-4(3H)-one derivatives as a new class of ROCK inhibitors. Structure-activity relationship studies of these compounds led to the identification of the most potent compound, 3-(3-methoxybenzyl)-6-(1H-pyrrolo[2,3-b]pyridin-4-yl)thieno[2,3-d]pyrimidin-4(3H)-one (8k), which showed IC50 values of 0.004 μM and 0.001 μM against ROCK Ⅰ and ROCK Ⅱ, respectively. In vitro, 8k significantly reduced the phosphorylation level of ROCK downstream signaling protein and induce changes in cell morphology and migration. Overall, this study provides a promising lead compound for drug discovery targeting ROCKs.  相似文献   

5.
Rho kinase is an important target implicated in a variety of cardiovascular diseases. Herein, we report the optimisation of the fragment derived ATP-competitive ROCK inhibitors 1 and 2 into lead compound 14A. The initial goal of improving ROCK-I potency relative to 1, whilst maintaining a good PK profile, was achieved through removal of the aminoisoquinoline basic centre. Lead 14A was equipotent against both ROCK-I and ROCK-II, showed good in vivo efficacy in the spontaneous hypertensive rat model, and was further optimised to demonstrate the scope for improving selectivity over PKA versus hydroxy Fasudil 3.  相似文献   

6.
Clinical development of ROCK inhibitors has so far been limited by systemic or local ROCK-associated side effects. A soft drug approach, which involves predictable metabolic inactivation of an active compound to a nontoxic metabolite, could represent an attractive way to obtain ROCK inhibitors with improved tolerability. We herein report the design and synthesis of a new series of soft ROCK inhibitors structurally related to the ROCK inhibitor Y-27632. These inhibitors contain carboxylic ester moieties which allow inactivation by esterases. While the parent esters display strong activity in enzymatic (ROCK2) and cellular (MLC phosphorylation) assays, their corresponding carboxylic acid metabolites have negligible functional activity. Compound 32 combined strong efficacy (ROCK2 IC50 = 2.5 nM) with rapid inactivation in plasma (t1/2 <5′). Compound 32 also demonstrated in vivo efficacy when evaluated as an IOP-lowering agent in ocular normotensive New-Zealand White rabbits, without ocular side effects.  相似文献   

7.
Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA).  相似文献   

8.
Inhibition of Rho kinase (ROCK) is an attractive strategy for the treatment of diseases such as hypertension, glaucoma, and cancer. Here we report chroman-3-amides as highly potent ROCK inhibitors with sufficient kinase selectivity, excellent cell activity, good microsomal stability, and desirable pharmacokinetic properties for study as potential therapeutic agents.  相似文献   

9.
ROCK1 and ROCK2 are highly homologous isoforms. Accumulated studies indicate that they have distinct different functions, and the development of isoform selective ROCK inhibitors will pave new roads for the treatment of various diseases. In this work, a series of amide-chroman derivatives were synthesized and biologically evaluated in order to develop potent and isoform selective ROCK2 inhibitors. Remarkably, (S)-6-methoxy-chroman-3-carboxylic acid (4-pyridin-4-yl-phenyl)-amide ((S)-7c) possessed ROCK2 inhibitory activity with an IC50 value of 3?nM and 22.7-fold isoform selectivity (vs. ROCK1). Molecular docking indicated that hydrophobic interactions were the key element for the high potency and isoform selectivity of (S)-7c. The binding free energies predicted by MM/GBSA were in good agreement with the experimental bioactivities, and the analysis of individual energy terms suggested that residue Lys105 in ROCK1 or Lys121 in ROCK2 was the key residue for the isoform selectivity of (S)-7c.  相似文献   

10.
A series of 2,4-disubstituted phthalazinones were synthesized and their biological activities, including antiproliferation, inhibition against Aurora kinases and cell cycle effects were evaluated. Among them, N-cyclohexyl-4-((4-(1-methyl-1H-pyrazol-4-yl)-1-oxophthalazin-2(1H)-yl) methyl) benzamide (12c) exhibited the most potent antiproliferation against five carcinoma cell lines (HeLa, A549, HepG2, LoVo and HCT116 cells) with IC50 values in range of 2.2–4.6?μM, while the IC50 value of reference compound VX-680 was 8.5–15.3?μM. Moreover, Aurora kinase assays exhibited that compound 12c was potent inhibitor of AurA and AurB kinase with the IC50 values were 118?±?8.1 and 80?±?4.2?nM, respectively. Molecular docking studies indicated that compound 12c forms better interaction with both AurA and AurB. Furthermore, compound 12c induced G2/M cell cycle arrest in HeLa cells by regulating protein levels of cyclinB1 and cdc2. These results suggested that 12c is a promising pan-Aurora kinase inhibitor for the potential treatment of cancer.  相似文献   

11.
Therapeutic interventions with Rho kinase (ROCK) inhibitors may effectively treat several disorders such as hypertension, stroke, cancer, and glaucoma. Herein we disclose the optimization and biological evaluation of potent novel ROCK inhibitors based on substituted indole and 7-azaindole core scaffolds. Substitutions on the indole C3 position and on the indole NH and/or amide NH positions all yielded potent and selective ROCK inhibitors (25, 42, and 50). Improvement of aqueous solubility and tailoring of in vitro and in vivo DMPK properties could be achieved through these substitutions.  相似文献   

12.
ROS1 protein is a receptor tyrosine kinase that has been reported mainly in meningiomas and astrocytomas, and until now, there is no selective inhibitor for this kinase. In this study, we illustrate for the synthesis of a highly potent and selective inhibitor for ROS1 kinase. The synthesized compound 1 was tested initially at a single dose concentration of 10 μM over 45 different kinases. At this concentration, a 94% inhibition of the enzymatic activity of ROS1 kinase was observed, while the inhibition in activity was below 30% in all of the other kinases. The pyrazole compound 1 was further tested in a 10-dose IC50 mode and showed an IC50 value of 199 nM for ROS1 kinase. The compound 1 can be used as a promising lead for the development of new selective inhibitors for ROS1 kinase, and it may open the way for new selective therapeutics for astrocytomas.  相似文献   

13.
Phenylglycine substituted isoquinolones 1 and 2 have previously been described as potent dual ROCK1/ROCK2 inhibitors. Here we describe the further SAR of this series to improve metabolic stability and rat oral exposure. Piperidine analog 20 which demonstrates sustained blood pressure normalization in an SHR blood pressure reduction model was identified through this effort.  相似文献   

14.
Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1 kinase to guide analog design, we were able to improve potency against all three Pim isoforms including a significant 10,000-fold gain against Pim-2. Compound 17 is a novel lead with low picomolar potency on all three Pim kinase isoforms.  相似文献   

15.
2,3,5-Trisubstituted pyridines have been designed as potent AKT inhibitors that are selective against ROCK1 based on the comparison between AKT and ROCK1 structures. Substitution at the 2-position of the core pyridine is the key element to provide selectivity against ROCK1. An X-ray co-crystal structure of 9p in PKA supports the proposed rationale of ROCK1 selectivity.  相似文献   

16.
The discovery and SAR of a series of β-aryl substituted pyrrolidine 2H-isoquinolin-1-one inhibitors of Rho-kinase (ROCK) derived from 2 is herein described. SAR studies have shown that aryl groups in the β-position are optimal for potency. Our efforts focused on improving the ROCK potency of this isoquinolone class of inhibitors which led to the identification of pyrrolidine 32 which demonstrated a 10-fold improvement in aortic ring (AR) potency over 2.  相似文献   

17.

Background

ROCK1 and ROCK2 are serine/threonine kinases that function downstream of the small GTP-binding protein RhoA. Rho signalling via ROCK regulates a number of cellular functions including organisation of the actin cytoskeleton, cell adhesion and cell migration.

Methodology/Principal Findings

In this study we use RNAi to specifically knockdown ROCK1 and ROCK2 and analyse their role in assembly of adhesion complexes in human epidermal keratinocytes. We observe that loss of ROCK1 inhibits signalling via focal adhesion kinase resulting in a failure of immature adhesion complexes to form mature stable focal adhesions. In contrast, loss of ROCK2 expression results in a significant reduction in adhesion complex turnover leading to formation of large, stable focal adhesions. Interestingly, loss of either ROCK1 or ROCK2 expression significantly impairs cell migration indicating both ROCK isoforms are required for normal keratinocyte migration.

Conclusions

ROCK1 and ROCK2 have distinct and separate roles in adhesion complex assembly and turnover in human epidermal keratinocytes.  相似文献   

18.
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.  相似文献   

19.
Rho kinase (ROCK) inhibitors are potential therapeutic agents to treat disorders such as hypertension, multiple sclerosis, cancers, and glaucoma. Here, we disclose the synthesis, optimization, biological evaluation of potent indole and 7-azaindole based ROCK inhibitors that have high potency on ROCK (IC(50)=1 nM) with 740-fold selectivity over PKA (47). Moreover, 47 showed very good DMPK properties making it a good candidate for further development. Finally, docking studies with a homology model of ROCK-II were performed to rationalize the binding mode of these compounds and showed the compounds bound in both orientations to take advantage to H-bonds with Lys-121 of ROCK-II.  相似文献   

20.
Parkinson’s disease (PD) is a late-onset neurodegenerative disease which occurs at more than 1% in populations aging 65-years and over. Recently, leucine-rich repeat kinase 2 (LRRK2) has been identified as a causative gene for autosomal dominantly inherited familial PD cases. LRRK2 G2019S which is a prevalent mutant found in familial PD patients with LRRK2 mutations, exhibited kinase activity stronger than that of the wild type, suggesting the LRRK2 kinase inhibitor as a potential PD therapeutics. To develop such therapeutics, we initially screened a small chemical library and selected compound 1, whose IC50 is about 13.2 μM. To develop better inhibitors, we tested five of the compound 1 derivatives and found a slightly better inhibitor, compound 4, whose IC50 is 4.1 μM. The cell-based assay showed that these two chemicals inhibited oxidative stress-induced neurotoxicity caused by over-expression of a PD-specific LRRK2 mutant, G2019S. In addition, the structural analysis of compound 4 suggested hydrogen bond interactions between compound 4 and Ala 1950 residue in the backbone of the ATP binding pocket of LRRK2 kinas domain. Therefore, compound 4 may be a promising lead compound to further develop a PD therapeutics based on LRRK2 kinase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号