首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our previous studies have shown that the rate constant for intramolecular electron transfer (IET) between the heme and molybdenum centers of chicken liver sulfite oxidase varies from approximately 20 to 1400 s(-1) depending upon reaction conditions [Pacheco, A., Hazzard, J. T., Tollin, G., and Enemark, J. H. (1999) J. Biol. Inorg. Chem. 4, 390-401]. These two centers are linked by a flexible polypeptide loop, suggesting that conformational changes, which alter the Mo-Fe distance, may play an important role in the observed IET rates. In this study, we have investigated IET in sulfite oxidase using laser flash photolysis as a function of solution viscosity. The solution viscosity was varied over the range of 1.0-2.0 cP by addition of either polyethylene glycol 400 or sucrose. In the presence of either viscosogen, an appreciable decrease in the IET rate constant value is observed with an increase in the solvent viscosity. The IET rate constant exhibits a linear dependence on the negative 0.7th power of the viscosity. Steady-state kinetics and EPR experiments are consistent with the interpretation that viscosity, and not other properties of the added viscosogens, is responsible for the dependence of IET rates on the solvent composition. The results are consistent with the role of conformational changes on IET in sulfite oxidase, which helps to clarify the inconsistency between the large rate constant for IET between the Mo and Fe centers and the long distance (approximately 32 A) between these two metal centers observed in the crystal structure [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., and Rees, D. C. (1997) Cell 91, 973-983].  相似文献   

2.
The present account summarizes our work on mononuclear vinyl ruthenium complexes of the type RuCl(CHCHR′)(CO)(PR3)2L, divinyl-bridged diruthenium complexes {RuCl(CO)(PR3)2L}2(μ-CHCH-bridge-CHCH) and on heterobinuclear systems where only one of the two redox-active metal-organic moieties is of the vinyl ruthenium type. The favourable electrochemical properties of the {RuCl(CO)(PR3)2L(CHCH-) tag and the various spectroscopic handles offered by that unit provide detailed insights into the charge and spin delocalization over the {MCl(CO)(PR3)2L} and CHCHR′ constituents in their associated radical cations. They also offer a convenient means for measuring electronic coupling in the mixed-valent radical cations of the homo- and heterodinuclear vinyl-bridged complexes and, under favourable circumstances, on the rate of intramolecular electron transfer between the individual redox sites. Aspects of this work include examples of complexes showing time-dependent valence trapping, complexes aimed at delineating the efficiencies of through-space versus through-bond pathways for electron delocalization, complexes where electrostatic effects on the redox splitting ΔE1/2 dominate over those from the resonance contribution and systems that exhibit extensive charge and spin delocalization between two dislike endgroups despite their intrinsically different redox potentials.  相似文献   

3.
Electron transfer over 12.6 A from the type 1 copper (T1Cu) to the type 2 copper (T2Cu) was investigated in the copper-containing nitrite reductases from two denitrifying bacteria (Alcaligenes xylosoxidans GIFU 1051 and Achromobacter cycloclastes IAN 1013), following pulse radiolytical reduction of T1Cu. In the presence of nitrite, the rate constant for the intramolecular electron transfer of the enzyme from A. xylosoxidans decreased 1/2 fold to 9 x 10(2) s-1 (20 degrees C, pH 7.0) as compared to that for the same process in the absence of nitrite. However, the rate constant increased with decreasing pH to become the same (2 x 10(3) s-1) as that in the absence of nitrite at pH 6.0. A similar result was obtained for the enzyme from A. cycloclastes. The pH profiles of the two enzymes in the presence of nitrite are almost the same as that of the enzyme activity of nitrite reduction. This suggests that the intramolecular electron transfer process is closely linked to the following process of catalytic reduction of nitrite. The difference in redox potential (DeltaE) of T2Cu minus T1Cu was calculated from equilibrium data for the electron transfer. The pH-dependence of DeltaE was in accord with the equation: DeltaE = DeltaE(0)+0.058 log (Kr[H+]+[H+]2)/(K(0)+[H+]), where K(r) and K(0) are the proton dissociation constants for the oxidized and reduced states of T2Cu, respectively. These results raise the possibility that amino acid residues linked by the redox of T2Cu play important roles in the enzyme reaction, being located near T2Cu.  相似文献   

4.
Sulfite oxidase (SOX) is a homodimeric molybdoheme enzyme that oxidizes sulfite to sulfate at the molybdenum center. Following substrate oxidation, molybdenum is reduced and subsequently regenerated by two sequential electron transfers (ETs) via heme to cytochrome c. SOX harbors both metals in spatially separated domains within each subunit, suggesting that domain movement is necessary to allow intramolecular ET. To address whether one subunit in a SOX dimer is sufficient for catalysis, we produced heterodimeric SOX variants with abolished sulfite oxidation by replacing the molybdenum-coordinating and essential cysteine in the active site. To further elucidate whether electrons can bifurcate between subunits, we truncated one or both subunits by deleting the heme domain. We generated three SOX heterodimers: (i) SOX/Mo with two active molybdenum centers but one deleted heme domain, (ii) SOX/Mo_C264S with one unmodified and one inactive subunit, and (iii) SOX_C264S/Mo harboring a functional molybdenum center on one subunit and a heme domain on the other subunit. Steady-state kinetics showed 50% SOX activity for the SOX/Mo and SOX/Mo_C264S heterodimers, whereas SOX_C264S/Mo activity was reduced by two orders of magnitude. Rapid reaction kinetics monitoring revealed comparable ET rates in SOX/Mo, SOX/Mo_C264S, and SOX/SOX, whereas in SOX_C264S/Mo, ET was strongly compromised. We also combined a functional SOX Mo domain with an inactive full-length SOX R217W variant and demonstrated interdimer ET that resembled SOX_C264S/Mo activity. Collectively, our results indicate that one functional subunit in SOX is sufficient for catalysis and that electrons derived from either Mo(IV) or Mo(V) follow this path.  相似文献   

5.
The multicopper oxidases are an intriguing, widespread family of enzymes that catalyze the reduction of O2 to water by a variety of single-electron and multiple-electron reducing agents. The structure and properties of the copper binding sites responsible for the latter chemical transformations have been studied for over 40 years and a detailed picture is emerging. This review focuses particularly on the kinetics of internal electron transfer between the type 1 (blue) copper site and the trinuclear center, as well as on the nature of the intermediates formed in the oxygen reduction process.  相似文献   

6.
To specify electron exchanges involving Desulfovibrio desulfuricans Norway tetra-heme cytochrome c3, the chemical modification of arginine 73 residue, was performed. Biochemical and biophysical studies have shown that the modified cytochrome retains its ability to both interact and act as an electron carrier with its redox partners, ferredoxin and hydrogenase. Moreover, the chemical modification effects on the cytochrome c3 1H NMR spectrum were similar to that induced by the presence of ferredoxin. This suggests that arginine 73 is localized on the cytochrome c3 ferredoxin interacting site. The identification of heme 4, the closest heme to arginine 73, as the ferredoxin interacting heme helps us to hypothesize about the role of the three other hemes in the molecule. A structural hypothesis for an intramolecular electron transfer pathway, involving hemes 4, 3 and 1, is proposed on the basis of the crystal structures of D. vulgaris Miyazaki and D. desulfuricans Norway cytochromes c3. The unique role of some structural features (alpha helix, aromatic residues) intervening between the heme groups, is proposed.  相似文献   

7.
The oxidation of ferric cytochrome c peroxidase by hydrogen peroxide yields a product, compound ES [Yonetani, T., Schleyer, H., Chance, B., & Ehrenberg, A. (1967) in Hemes and Hemoproteins (Chance, B., Estabrook, R. W., & Yonetani, T., Eds.) p 293, Academic Press, New York], containing an oxyferryl heme and a protein free radical [Dolphin, D., Forman, A., Borg, D. C., Fajer, J., & Felton, R. H. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 614-618]. The same oxidant takes the ferrous form of the enzyme to a stable Fe(IV) peroxidase [Ho, P. S., Hoffman, B. M., Kang, C. H., & Margoliash, E. (1983) J. Biol. Chem. 258, 4356-4363]. It is 1 equiv more highly oxidized than the ferric protein, contains the oxyferryl heme, but leaves the radical site unoxidized. Addition of sodium fluoride to Fe(IV) peroxidase gives a product with an optical spectrum similar to that of the fluoride complex of the ferric enzyme. However, reductive titration and electron paramagnetic resonance (EPR) data demonstrate that the oxidizing equivalent has not been lost but rather transferred to the radical site. The EPR spectrum for the radical species in the presence of Fe(III) heme is identical with that of compound ES, indicating that the unusual characteristics of the radical EPR signal do not result from coupling to the heme site. By stopped-flow measurements, the oxidizing equivalent transfer process between heme and radical site is first order, with a rate constant of 0.115 s-1 at room temperature, which is independent of either ligand or protein concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have examined the temperature dependence of the intramolecular electron transfer (ET) between heme b and heme o(3) in CO-mixed valence cytochrome bo(3) (Cbo) from Escherichia coli. Upon photolysis of CO-mixed valence Cbo rapid ET occurs between heme o(3) and heme b with a rate constant of 2.2 x 10(5) s(-1) at room temperature. The corresponding rate of CO recombination is found to be 86 s(-1). From Eyring plots the activation energies for these two processes are found to be 3.4 kcal/mol and 6.7 kcal/mol for the ligand binding and ET reactions, respectively. Using variants of the Marcus equation the reorganization energy (lambda), electronic coupling factor (H(AB)), and the ET distance were found to be 1.4 +/- 0.2 eV, (2 +/- 1) x 10(-3) eV, and 9 +/- 1 A, respectively. These values are quite distinct from the analogous values previously obtained for bovine heart cytochrome c oxidase (CcO) (0.76 eV, 9.9 x 10(-5) eV, 13.2 A). The differences in mechanisms/pathways for heme b/heme o(3) and heme a/heme a(3) ET suggested by the Marcus parameters can be attributed to structural changes at the Cu(B) site upon change in oxidation state as well as differences in electronic coupling pathways between Heme b and heme o(3).  相似文献   

9.
Peptidyl arginine deiminases (PADs) catalyze the post-translational deimination of peptidyl arginine residues to form citrulline residues. Aberrant citrullination of histones by one of the PAD isozymes, PAD4, is associated with various diseases, including rheumatoid arthritis, so high-throughput screening systems are needed to identify PAD4 inhibitors as chemical tools to investigate the role of PAD4, and as candidate therapeutic agents. Here, we utilized the addition-cyclization reaction between phenylglyoxal and citrulline under acidic conditions to design turn-on fluorescent probes for citrulline based on the donor-excited photoinduced electron transfer (d-PeT) mechanism. Among several derivatives of phenylglyoxal bearing a fluorescent moiety, we found that FGME enabled detection of citrulline without a neutralization process, and we used it to establish a simple methodology for turn-on fluorescence detection of citrulline.  相似文献   

10.
Larsen RW 《FEBS letters》1999,455(1-2):75-78
To test a possible role of 14-3-3 proteins in the degradation of nitrate reductase (NR) in leaves, we monitored 14-3-3s bound to NR in leaf extracts. The amount of 14-3-3s that coimmunoprecipitated with serine 543 phospho-NR (p-NR) increased upon a light/dark transition. This was accompanied by a similar increase in the protein turnover rate of NR in leaves. Purified NR was degraded in extracts from darkened but not from illuminated leaves. Removal of 14-3-3s from such extracts prevented NR degradation. We conclude that the availability of 14-3-3s for p-NR regulates the stability of NR.  相似文献   

11.
Tyrosine 343 in human sulfite oxidase (SO) is conserved in all SOs sequenced to date. Intramolecular electron transfer (IET) rates between reduced heme (Fe(II)) and oxidized molybdenum (Mo(VI)) in the recombinant wild-type and Y343F human SO were measured for the first time by flash photolysis. The IET rate in wild-type human SO at pH 7.4 is about 37% of that in chicken SO with a similar decrease in k(cat). Steady-state kinetic analysis of the Y343F mutant showed an increase in K(m)(sulfite) and a decrease in k(cat) resulting in a 23-fold attenuation in the specificity constant k(cat)/K(m)(sulfite) at the optimum pH value of 8.25. This indicates that Tyr-343 is involved in the binding of the substrate and catalysis within the molybdenum active site. Furthermore, the IET rate constant in the mutant at pH 6.0 is only about one-tenth that of the wild-type enzyme, suggesting that the OH group of Tyr-343 is vital for efficient IET in SO. The pH dependences of IET rate constants in the wild-type and mutant SO are consistent with the previously proposed coupled electron-proton transfer mechanism.  相似文献   

12.
Laser flash photolysis has been used to investigate the kinetics of reduction of trimethylamine dehydrogenase by substoichiometric amounts of 5-deazariboflavin semiquinone, and the subsequent intramolecular electron transfer from the FMN cofactor to the Fe4S4 center. The initial reduction event followed second-order kinetics (k = 1.0 x 10(8) M-1 s-1 at pH 7.0 and 6.4 x 10(7) M-1 s-1 at pH 8.5) and resulted in the formation of the neutral FMN semiquinone and the reduced iron-sulfur cluster (in a ratio of approximately 1:3). Following this, a slower, protein concentration independent (and thus intramolecular) electron transfer was observed corresponding to FMN semiquinone oxidation and iron-sulfur cluster reduction (k = 62 s-1 at pH 7.0 and 30 s-1 at pH 8.5). The addition of the inhibitor tetramethylammonium chloride to the reaction mixture had no effect on these kinetic properties, suggesting that this compound exerts its effect on the reduced form of the enzyme. Treatment of the enzyme with phenylhydrazine, which introduces a phenyl group at the 4a-position of the FMN cofactor, decreased both the rate constant for reduction of the protein and the extent of FMN semiquinone production, while increasing the amount of iron-sulfur center reduction, consistent with the results obtained with the native enzyme. Experiments in which the kinetics of reduction of the enzyme were determined during various stages of partial reduction were also consistent with these results, and further indicated that the FMN semiquinone form of the enzyme is more reactive toward the deazariboflavin reductant than is the oxidized FMN.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Arginine 160 in human sulfite oxidase (SO) is conserved in all SO species sequenced to date. Previous steady-state kinetic studies of the R160Q human SO mutant showed a remarkable decrease in k(cat)/K(m)(sulfite) of nearly 1000-fold, which suggests that Arg 160 in human SO makes an important contribution to the binding of sulfite near the molybdenum cofactor [Garrett, R. M., Johnson, J. L., Graf, T. N., Feigenbaum, A., Rajagopalan, K. V. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6394-6398]. In the crystal structure of chicken SO, Arg 138, the equivalent of Arg 160 in human SO, is involved in the formation of a positively charged sulfite binding site [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., Rees, D. C. (1997) Cell 91, 973-983]. To further assess the role of Arg 160 in human SO, intramolecular electron transfer (IET) rates between the reduced heme [Fe(II)] and oxidized molybdenum [Mo(VI)] centers in the wild type, R160Q, and R160K human SO forms were investigated by laser flash photolysis. In the R160Q mutant, the IET rate constant at pH 6.0 was decreased by nearly 3 orders of magnitude relative to wild type, which indicates that the positive charge of Arg 160 is essential for efficient IET in human SO. Furthermore, the IET rate constant for the R160K mutant is about one-fourth that of the wild type enzyme, which strongly indicates that it is the loss of charge of Arg 160, and not its precise location, that is responsible for the much larger decrease in IET rates in the R160Q mutant. Steady-state kinetic measurements indicate that IET is rate-limiting in the catalytic cycle of the R160Q mutant. Thus, the large decrease in the IET rate constant rationalizes the fatal impact of this mutation in patients with this genetic disorder.  相似文献   

14.
Photoremovable protecting groups (also known as photolabile protecting groups, phototriggers, or caged molecules) are functional groups that are attached to a molecule in such a way as to render the latter inactive. Exposure to light releases the protecting group, restoring functionality to the molecule. The use of photoremovable protecting groups (PRPGs) allows for precise spatial and temporal control of chemical reactions. Such groups have found use in many diverse applications, ranging from time resolved studies of physiological processes, to fabrication of spatially resolved combinatorial libraries of DNA. Recent research efforts have focused on designing protecting groups that are removed through photoinduced electron transfer (PET), rather than by direct photolysis. The PET strategy allows the light absorption step to be decoupled from the bond breaking step, thus permitting more control over the wavelengths of light used in the release process. The application of these types of protecting groups to the photochemical release of amines, alcohols, ketones, and carboxylic acids is described.  相似文献   

15.
An intramolecular electron-transfer process has previously been shown to take place between the Cys3--Cys26 radical-ion (RSSR-) produced pulse radiolytically and the Cu(II) ion in the blue single-copper protein, azurin [Farver, O. & Pecht, I. (1989) Proc. Natl Acad. Sci. USA 86, 6868-6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine residue (Met44) that is proximal to the copper coordination sphere has been replaced by a positively charged lysyl residue ([M44K]azurin), while in the second mutant, another residue neighbouring the Cu-coordination site (His35) has been replaced by a glutamine ([H35Q]azurin). Though both these substitutions are not in the microenvironment separating the electron donor and acceptor, they were expected to affect the LRET rate because of their effect on the redox potential of the copper site and thus on the driving force of the reaction, as well as on the reorganization energies of the copper site. The rate of intramolecular electron transfer from RSSR- to Cu(II) in the wild-type P. aeruginosa azurin (delta G degrees = -68.9 kJ/mol) has previously been determined to be 44 +/- 7 s-1 at 298 K, pH 7.0. The [M44K]azurin mutant (delta G degrees = -75.3 kJ/mol) was now found to react considerably faster (k = 134 +/- 12 s-1 at 298 K, pH 7.0) while the [H35Q]azurin mutant (delta G degrees = -65.4 kJ/mol) exhibits, within experimental error, the same specific rate (k = 52 +/- 11 s-1, 298 K, pH 7.0) as that of the wild-type azurin. From the temperature dependence of these LRET rates the following activation parameters were calculated: delta H++ = 37.9 +/- 1.3 kJ/mol and 47.2 +/- 0.7 kJ/mol and delta S++ = -86.5 +/- 5.8 J/mol.K and -46.4 +/- 4.4 J/mol.K for [H35Q]azurin and [M44K]azurin, respectively. Using the Marcus relation for intramolecular electron transfer and the above parameters we have determined the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism.  相似文献   

16.
Ching E  Gennis R  Larsen R 《FEBS letters》2002,527(1-3):81-85
In this report we describe the activation volumes associated with the heme-heme electron transfer (ET) and CO rebinding to the binuclear center subsequent to photolysis of the CO-mixed-valence derivative of Escherichia coli cytochrome bo(3) (Cbo). The activation volumes associated with the heme-heme ET (k=1.2 x 10(5) s(-1)), and CO rebinding (k=57 s(-1)) are found to be +27.4 ml/mol and -2.6 ml/mol, respectively. The activation volume associated with the rebinding of CO is consistent with previous Cu X-ray absorption studies of Cbo where a structural change was observed at the Cu(B) site (loss of a histidine ligand) due to a change in the redox state of the binuclear center. In addition, the volume of activation for the heme-heme ET was found to be quite distinct from the activation volumes obtained for heme-heme ET in bovine heart Cytochrome c oxidase. Differences in mechanisms/pathways for heme b/heme o(3) and heme a/heme a(3) ET are suggested based on the associated activation volumes and previously obtained Marcus parameters.  相似文献   

17.
18.
电活性微生物具有独特的胞外电子传递功能,在地球化学循环和环境污染修复中起着重要作用。细胞色素c在电活性微生物胞外电子传递过程中扮演了重要角色,不仅参与直接电子传递途径,还参与电子媒介介导的间接电子传递。其电子传递功能不仅对地球环境中铁、锰、碳等元素的循环具有重要作用,还应用于能源生产、废水处理、生物修复等众多领域,具有良好的应用潜力。本文以电活性微生物的2个模式菌属(希瓦氏菌属和地杆菌属)为例,综述了电活性微生物将电子由胞内转移至胞外的方式和途径,详细阐述了细胞色素c在该胞外电子传递过程中的重要作用,总结了细胞色素c介导的胞外电子传递过程所涉及的分析方法,并对微生物胞外电子传递未来的研究方向提出了展望。  相似文献   

19.
Hirota S  Azuma K  Fukuba M  Kuroiwa S  Funasaki N 《Biochemistry》2005,44(30):10322-10327
Human myoglobin (Mb) possesses a unique cysteine (Cys110), whereas other mammalian Mbs do not. To investigate the effect of a cysteine residue on Mb, we introduced cysteine to various sites on the surface of sperm whale Mb (K56C, V66C, K96C, K102C, A125C, and A144C) by mutation. The cysteines were inserted near the end of alpha-helices, except for V66C, where the cysteine was introduced in the middle of an alpha-helix. Reduction of the heme was observed for each mutant metMb by incubation at 37 degrees C under carbon monoxide atmosphere, which was much faster than reduction of wild-type metMb under the same condition. Heme reduction did not occur significantly under nitrogen or oxygen atmospheres. The rate constant for heme reduction increased for higher mutant Mb concentration, whereas it did not change significantly when the CO concentration was reduced from 100% CO to 50% CO with 50% O(2). The similarity in the rate constants with different CO concentrations indicates that CO stabilizes the reduced heme by coordination to the heme iron. SDS-PAGE analysis showed that mutant Mb dimers were formed by incubation under CO atmosphere but not under air. These dimers were converted back to Mb monomers by an addition of 2-mercaptoethanol, which showed formation of a Mb dimer through a disulfide bond. The rate constant decreased in general as the heme-cysteine distance was increased, although V66C Mb exhibited a very small rate constant. Since V66 is placed in the middle of an alpha-helix, steric hindrance would occur and prevent formation of a dimer when the cysteine residues of two different V66C Mb molecules interact with each other. The rate constants also decreased for K56C and A144C Mbs presumably because of the electrostatic repulsion during dimer formation, since they are relatively charged around the inserted cysteine.  相似文献   

20.
A highly sensitive and selective fluorescence method for the detection of acetylcholine (ACh) based on enzyme-generated hydrogen peroxide (H2O2) and a new boronate intramolecular charge transfer (ICT) fluorescence probe, 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-butyl-1,8-naphthalimide (BN), was developed. This strategy involves the reaction of ACh with acetylcholinesterase (AChE) to produce choline, which is further oxidized by choline oxidase (ChOx) to obtain betaine and H2O2. The enzyme-generated H2O2 reacts with BN and results in hydrolytic deprotection of BN to generate fluorescent product (4-hydroxyl-N-butyl-1,8-naphthalimide, ON). Two consecutive linear response ranges allow determining ACh in a wide concentration range with a low detection limit of 2.7 nM (signal/noise = 3). Compared with other fluorescent probes based on the mechanism of nonspecific oxidation, this reported boronate probe has the advantage of no interference from other biologically relevant reactive oxygen species (ROS) on the detection of ACh. This study provides a new method for the detection of ACh with high selectivity and sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号