首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The condensation of substituted aromatic aldehydes with 7-amino-4-methyl-quinolin-2(1H)-one (1) has lead to the isolation of quinolin-2(1H)-one derived Schiff bases (2-14). The copper(II) complexes (2a-14a) of the ligands were also prepared, and together with their corresponding free ligands were fully characterised by elemental analyses, spectral methods (IR, 1H and 13C NMR, AAS, UV-Vis), magnetic and conductance measurements. The bidentate ligands coordinated to the copper(II) ion through the deprotonated phenolic oxygen and the azomethine nitrogen of the ligands in almost all cases. X-ray crystal structures of two of the complexes, 5a and 8a, confirmed the bidentate coordination mode. All of the compounds were investigated for their antimicrobial activities against the fungus, Candida albicans, and against Gram-positive and Gram-negative bacteria. The compounds were found to have excellent anti-Candida activity but were inactive against Staphylococcus aureus and Escherichia coli. Selected compounds (2-8 and 2a-8a) were also screened for their in vitro anticancer potential using the human hepatic carcinoma cell line, Hep-G2. Several derivatives were shown to be active comparable to that of cisplatin.  相似文献   

2.
The synthesis of the unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl nucleosides of 5-fluorouracil (6a), N6-benzoyl adenine (6b), uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e), is described. Monoiodination of compounds 1a,b, followed by acetylation, catalytic hydrogenation and finally regioselective 2′-O-deacylation afforded the partially acetylated dideoxynucleoside analogues of 5-fluorouracil (5a) and N6-benzoyl adenine (5b), respectively. Direct oxidation of the free hydroxyl group at the 2′-position of 5a,b, with simultaneous elimination reaction of the β-acetoxyl group, afforded the desired unsaturated 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl derivatives 6a,b. Compounds 1c-e were used as starting materials for the synthesis of the dideoxy unsaturated carbonyl nucleosides of uracil (6c), thymine (6d) and N4-benzoyl cytosine (6e). Similarly a protection-selective deprotection sequence followed by oxidation of the free hydroxyl group at the 2′-position of the dideoxy benzoylated analogues 9c-e with simultaneous elimination reaction of the β-benzoyl group, gave the desired nucleosides 6c-e. None of the compounds was inhibitory to a broad spectrum of DNA and RNA viruses at subtoxic concentrations. The 5-fluorouracil derivative 6a was more cytostatic (50% inhibitory concentration ranging between 0.2 and 12 μM) than the other compounds.  相似文献   

3.
A series of novel 9(10H)-acridinone derivatives with terminal amino substituents at C2 position on the acridinone ring were synthesized and studied for their antiproliferative activity and underlying mechanisms. These compounds demonstrated promising cytotoxicity to leukemia cells CCRF-CEM, displaying IC50 values in the low micromolar range. Structure–activity relationships (SAR) indicated that the compound 6d bearing a pyrrolidine substituent and 8a with a methyl ammonium side chain displayed higher cytotoxicity to CCRF-CEM cells and also solid tumor cells A549, HepG2, and MCF7. Furthermore, the compounds 6d and 8a had strong binding activity to calf thymus DNA (ct DNA), as detected by UV absorption and fluorescence quenching assays, but limited inhibitory activity to human topoisomerase 1 (topo 1). Taken together, this study discovered a series of new synthetic 9(10H)-acridinone derivatives with potent DNA binding and anticancer activity.  相似文献   

4.
The reaction of 2,6-dimethanolpyridine with arylboronic acids at room temperature led to the formation of tetrameric compounds 1a-1e in good yields. Since the tetrameric derivatives were insoluble in common organic solvents, their characterization was based on IR, mass spectrometry, as well as 13C and 11B NMR, in the solid state. Macrocyclic compounds 1a-1e can be hydrolyzed upon heating in DMSO to give adducts 2a-2e, which are only held by a coordination bond between the nitrogen and boron atoms, as demonstrated by 1H, 13C and 11B NMR, in solution. Moreover, the presence of an additional carbon atom in the aliphatic chain of the ligand, as in the case of 2,6(β-diethanolamine)pyridine, leads exclusively to the formation of the monomeric specie 4, as established by X-ray diffraction analysis.  相似文献   

5.
A series of dioxadrol analogues with fluorine substituents in position 4 of the piperidine ring has been synthesized and pharmacologically evaluated. The key step in the synthesis was the fluorination of diastereomeric piperidones 6a and 6c as well as diastereomeric alcohols 9a and 9c with DAST. The reaction of the alcohols 9a and 9c took place with inversion of configuration. After removal of the Cbz-protective group, the NMDA receptor affinities of the resulting secondary amines 8a, 8c, 12b, and 12d were investigated in receptor binding studies. It was shown that the like-configuration of the ring junction was crucial for high NMDA receptor affinity. An axially oriented fluorine atom in position 4 led to 2-(2,2-diphenyl-1,3-dioxolan-4-yl)-4-fluoropiperidine (12d, WMS-2517) with a Ki-value of 27 nM. The NMDA receptor affinity of 8c (WMS-2513) with an additional fluorine atom in equatorial 4-position was slightly reduced (Ki = 81 nM). Both fluorinated dioxadrol derivatives 8c and 12d showed high selectivity against σ1 and σ2 receptors as well as the polyamine binding site of NR2B receptors.  相似文献   

6.
First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2–C7) were prepared (Scheme 1, 5a–f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1?μM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1?μM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n?=?2–5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1?μM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79?kcal?mol?1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.  相似文献   

7.
4-aryl-2-amino-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitrile (1), 4-aryl-2-oxo-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)-pyridin-3-carbonitriles (2a-2c), 3-(6-aryl-1,2,5,6- tetrahydro-2-thioxopyrimidin-4-yl)-4-hydroxy-2H-chromen-2-one (3a, 3b) and pyrazol-3-yl-4-hydroxycoumarin derivatives (4a-4c, 5, 6a, 6b, 7a, 7b, and 8a-8c) were prepared in order to measure their % change dopamine release in comparison to amphetamine as reference, using PC-12 cells in different concentrations. In addition, the molecular modeling study of the compounds into 3BHH receptor was also demonstrated. The calculated inhibition constant (ki) implemented in the AutoDock program revealed identical correlation with the experimental results to that obtained binding free energy (ΔGb) as both parameters revealed reasonable correlation coefficients (R2) being 0.51 involving 10 compounds; (1, 2b, 2c, 3a, 3b, 4a, 4b, 6a, and 8c).  相似文献   

8.
The synthesis and anticonvulsant properties of new N-Mannich bases of [7,8-f]benzo-2-aza-spiro[4.5]decane-1,3-diones (5ah) and [7,8-f]benzo-1,3-diaza-spiro[4.5]decane-2,4-diones (7ah) were described. Initial anticonvulsant screening was performed using intraperitoneal (ip) maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) seizures tests. The neurotoxicity was determined applying the rotarod test. The majority of compounds were effective in the MES or/and scPTZ screen. The quantitative studies showed that several molecules were more potent than phenytoin, used as reference drug. Selected derivatives were screened in the 6-Hz test and also assessed for potential activity against nerve agents using the Pilocarpine Induced Status Prevention model. To explain the possible mechanism of anticonvulsant action, for chosen active derivatives, their influence on voltage-dependent Na+ channel were tested in vitro.  相似文献   

9.
Seven new 1,3-diazepinium chlorides exhibiting some structural similarities to the 1,4-benzodiazepines were synthesized. In a Hippocratic screen using mice, three of these salts, 3-methoxy-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8a), 3-methoxy-9-methyl-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8c) and 3-methoxy-11-methyl-6-oxo-7,13-dihydro-6H-benzofuro[2,3-e]pyrido[1,2-a][1,3]diazepin-12-ium chloride (8e) were examined for their effect on the central nervous system, and their activities compared to that of diazepam. On their own, salts 8a, 8c and 8e solicited no sedative effects on the behaviour of the animals. However, they elicited significant effects in combination with diazepam on diazepam-induced activities such as decreased motor activity, ataxia and loss of righting reflex. Compounds 8a and 8c were fitted into the pharmacophore/receptor model developed by Cook et al. with interaction at the L1, H1 and A2 sites indicating that they are potential inverse agonists of the Bz receptor. The compounds displayed some affinity for the α1 isoform of the GABAA/BzR (LDi interaction) but are non-selective for α5 (no L2 interaction). Results of binding affinity studies showed that compound 8a is mildly selective for the α1 receptor although not very potent (Ki = 746.5 nM). The significant potentiation of diazepam-induced ataxia and decreased motor activity by compounds 8a and 8c in the Hippocratic screen may be associated with α1 selectivity.  相似文献   

10.
Based on the definition of a 5-HT4 receptor antagonist pharmacophore, a series of pyrrolo[1,2-a]thieno[3,2-e] and pyrrolo[1,2-a]thieno[2,3-e] pyrazine derivatives were designed, prepared, and evaluated to determine the properties necessary for high-affinity binding to 5-HT4 receptors. The compounds were synthesized by substituting the chlorine atom of the pyrazine ring with various N-alkyl-4-piperidinylmethanolates. They were evaluated in binding assays with [3H]GR113808 (1) as the 5-HT4 receptor radioligand. The affinity values (Ki or inhibition percentages) were affected by both the substituent on the aromatic ring and the substituent on the lateral piperidine chain. A methyl group on the tricyclic ring produced a marked increase in affinity while an N-propyl or N-butyl group gave compounds with nanomolar affinities. Among the most potent ligands, 34d was selected for further pharmacological studies and evaluated in vivo. This compound acts as an antagonist/weak partial agonist in COS-7 cells stably expressing the 5-HT4(a) receptor and is of great interest as a peripheral antinociceptive agent.  相似文献   

11.
In a search for novel multifunctional anti-Alzheimer agents, a congeneric set of seventeen flavone-8-acrylamide derivatives (8a─q) were synthesized and evaluated for their cholinesterase inhibitory, antioxidant, neuroprotective and modulation of Aβ aggregation activities. The target compounds showed effective and selective inhibitory activity against the AChE over BuChE. In addition, the target compounds also showed moderate anti-oxidant activity and strong neuroprotective capacities, and accelerated dosage-dependently the Aβ aggregation. Also, we presented here a complete study on the interaction of 8a, 8d, 8e, 8h and 8i with AChE. Through fluorescence emission studies, the binding sites number found to be 1, binding constants were calculated as 2.04 × 104, 2.22 × 104, 1.18 × 104, 9.8 × 103 and 3.2 × 104 M−1 and free energy change as −5.83, −5.91, −5.51, −5.41 and −6.12 kcal M−1 at 25 °C which were well agreed with the computational calculations indicating a strong binding affinity of flavones and AChE. Furthermore, the CD studies revealed that the secondary structure of AChE became partly unfolded upon binding with 8a, 8d, 8e, 8h and 8i.  相似文献   

12.
Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6qu); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.  相似文献   

13.
4-(Piperazin-1-yl methyl)-N1-arylsulfonyl indole derivatives were designed and synthesized as 5-HT6 receptor (5-HT6R) ligands. The lead compound 6a, from this series shows potent in vitro binding affinity, good PK profile, no CYP liabilities and activity in animal models of cognition.  相似文献   

14.
In the present paper we describe the biological activity of newly designed and synthesized series of pyrrolo[3,4-c]pyrrole Mannich bases (7a-n). The Mannich bases were obtained in good yields by one-pot, three-component condensation of pyrrolo[3,4–c]pyrrole scaffold (6a-c) with secondary amines and an excess of formaldehyde solution in C2H5OH. The chemical structures of the compounds were characterized by 1H NMR, 13C NMR, FT-IR, and elemental analysis. Moreover, single crystal X-ray diffraction has been recorded for compound 7l. All synthesized derivatives were investigated for their potencies to inhibit COX-1 and COX-2 enzymes by colorimetric inhibitor screening assay. In order to analyse the intermolecular interactions between the ligands and cyclooxygenase, experimental data were supported with the results of molecular docking simulations. According to the results, all of the tested compounds inhibited the activity of COX-1 and COX-2.  相似文献   

15.
The therapeutic success of peptide glucagon-like peptide-1 (GLP-1) receptor agonists for the treatment of type 2 diabetes mellitus has inspired discovery efforts aimed at developing orally available small-molecule GLP-1 receptor agonists. In this study, two series of new pyrimidine derivatives were designed and synthesized using an efficient route, and were evaluated in terms of GLP-1 receptor agonist activity. In the first series, novel pyrimidines substituted at positions 2 and 4 with groups varying in size and electronic properties were synthesized in a good yield (78–90%). In the second series, the designed pyrimidine templates included both urea and Schiff base linkers, and these compounds were successfully produced with yields of 77–84%. In vitro experiments with cultured cells showed that compounds 3a and 10a (10?15–10?9 M) significantly increased insulin secretion compared to that of the control cells in both the absence and presence of 2.8 mM glucose; compound 8b only demonstrated significance in the absence of glucose. These findings represent a valuable starting point for the design and discovery of small-molecule GLP-1 receptor agonists that can be administered orally.  相似文献   

16.
N6-(3-Iodobenzyl)adenosine-5′-N-methyluronamide (1a, IB-MECA) exhibited polypharmacological characteristics targeting A3 adenosine receptor (AR), peroxisome proliferator-activated receptor (PPAR) γ, and PPARδ, simultaneously. The bioisosteric replacement of oxygen in 4′-oxoadenosines with selenium significantly increased the PPARδ-binding activity. 2-Chloro-N6-(3-iodobenzyl)-4′-selenoadenosine-5′-N-methyluronamide (3e) and related 4′-selenoadenosine derivatives significantly enhanced adiponectin biosynthesis during adipogenesis in human bone marrow mesenchymal stem cells (hBM-MSCs). The PPARδ-binding affinity, but not the A3 AR binding affinity, of 4′-selenoadenosine derivatives correlated with their adiponectin secretion stimulation. Compared with the sugar ring of 4′-oxoadenosine, that of 4′-selenoadenosine was more favorable in forming the South sugar conformation. In the molecular docking simulation, the South sugar conformation of compound 3e formed additional hydrogen bonds inside the PPARδ ligand-binding pocket compared with the North conformation. Therefore, the sugar conformation of 4′-selenoadenosine PPAR modulators affects the ligand binding affinity against PPARδ.  相似文献   

17.
A new class of corticotropin releasing factor 1 (CRF1) receptor antagonists characterized by a tricyclic core ring was designed and synthesized. Novel tricyclic derivatives 2ae were designed as CRF1 receptor antagonists based on conformation analysis of our original 2-anilinobenzimidazole CRF1 receptor antagonist. The synthesized tricyclic derivatives 2ae showed CRF1 receptor binding activity with IC50 values of less than 400?nM, and the 1,2,3,4-tetrahydropyrimido-[1,2-a]benzimidazole derivative 2e was selected as a lead compound with potent in vitro CRF1 receptor binding activity (IC50?=?7.1?nM). To optimize the pharmacokinetic profiles of lead compound 2e, we explored suitable substituents on the 1-position and 6-position, leading to the identification of compound 42c-R, which exhibited potent CRF1 receptor binding activity (IC50?=?58?nM) with good oral bioavailability (F?=?68% in rats). Compound 42c-R exhibited dose-dependent inhibition of [125I]-CRF binding in the frontal cortex (5 and 10?mg/kg, p.o.) as well as suppression of locomotor activation induced by intracerebroventricular administration of CRF in rats (10?mg/kg, p.o.). These results suggest that compound 42c-R successfully binds CRF1 receptors in the brain and exhibits the potential to be further examined for clinical studies.  相似文献   

18.
A series of novel furo[2,3-b]pyridine-2-carboxamide 4ah/pyrido[3′,2′:4,5]furo[3,2-d] pyrimidin-4(3H)-one derivatives 5ap were prepared from pyridin 2(1H) one 1 via selective O-alkylation with α-bromoethylester followed by cyclization, then reaction with different aliphatic primary amines to obtain 4 and further reaction with triethyl orthoacetate/triethyl orthoformate. Also prepared novel furo[2,3-b]pyridine-2-carbohydrazide Schiff’s bases 7ah and pyrido [3′,2′:4,5]furo[3,2-d]pyrimidin-4(3H)-one derivatives 8ah starting from furo[2,3-b]pyridine carboxylate derivatives 3 by reaction with hydrazine hydrate to form 6 and reaction with diverse substituted aldehydes and cyclization. Products 4ah, 5ap, 7ah and 8ah were screened against four human cancer cell lines (HeLa, COLO205, Hep G2 and MCF 7) and one normal cell line (HEK 293). Compounds 4e, 4f, 4g, 5h, 7c, 7d, 7e and 7f showed significant anticancer activity against all the cell lines at micro molar concentration and found to be non-toxic to normal cell line. Studies for HeLa, COLO205 and MCF-7 using CoMFA and CoMSIA. Models from 3D-QSAR provided a strong basis for future rational design of more active and selective HeLa, COLO205 and MCF-7 cell line inhibitors.  相似文献   

19.
A new class of pyrrolo[2,3-d]pyrimidin-4-one corticotropin-releasing factor 1 (CRF1) receptor antagonists has been designed and synthesized. In general, reported CRF1 receptor antagonists possess a sp2-nitrogen atom as hydrogen bonding acceptor (HBA) on their core scaffolds. We proposed to use a carbonyl group of pyrrolo[2,3-d]pyrimidin-4-one derivatives as a replacement for the sp2-nitrogen atom as HBA in classical CRF1 receptor antagonists. As a result, several pyrrolo[2,3-d]pyrimidin-4-one derivatives showed CRF1 receptor binding affinity with IC50 values in the submicromolar range. Ex vivo 125I-sauvagine binding studies showed that 2-(dipropylamino)-3,7-dimethyl-5-(2,4,6-trimethylphenyl)-3,7-dihydro-4H-pyrrolo[2,3-d]pyrimidin-4-one (16b) (30 mg/kg, po) was able to penetrate into the brain and inhibit radioligand binding to CRF1 receptors (frontal cortex, olfactory bulb, and pituitary) in mice. We identified pyrrolo[2,3-d]pyrimidin-4-one derivatives as the first CRF1 antagonists with a carbonyl-based HBA.  相似文献   

20.
Here we describe the design, synthesis, and pharmacological evaluation of a set of compounds structurally related to the high affinity serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (6, LP-211). Specific structural modifications were performed in order to maintain affinity for the target receptor and to improve the selectivity over 5-HT1A and adrenergic α1 receptors. The synthesized compounds have chemical features that could enable labeling with a positron emitter radioisotope (carbon-11 or fluorine-18) and lipophilicity within the range considered optimal for brain penetration and low non-specific binding. 4-[2-(4-Methoxyphenyl)phenyl]-N-(pyridin-4-ylmethyl)piperazinehexanamide (23a) and N-pyridin-4-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (26a) were radiolabeled on the methoxy group with carbon-11. Positron emission tomography (PET) analysis revealed that [11C]-23a and [11C]-26a were P-glycoprotein (P-gp) substrates and rapidly metabolized, resulting in poor brain uptake. These features were not predicted by in vitro tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号