首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

2.
This present study identifies a number of azolyl-substituted indoles as potent inhibitors of aromatase. In the sub-series of 3-(azolylmethyl)-1H-indoles, four imidazole derivatives and their triazole analogues were tested. Imidazole derivatives 11 and 14 in which the benzyl moiety was substituted by 2-chloro and 4-cyano groups, respectively, were the most active, with IC50 values ranging between 0.054 and 0.050 μM. In the other sub-series, eight 3-(α-azolylbenzyl)-1H-indoles were prepared and tested. Compound 30, the N-ethyl imidazole derivative, proved to be an aromatase inhibitor, showing an IC50 value of 0.052 μM. All target compounds were further evaluated against 17α-hydroxylase/C17,20-lyase to determine their selectivity profile.  相似文献   

3.
4.
根据NS1蛋白是一种多功能促进病毒复制的组分,并有拮抗干扰素的作用,应用基于酵母的测定方法,筛选获得了抑制NS1功能的化合物。这一化合物有反转抑制干扰素mRNA的功能,不仅可作为药物开发,还可用于探讨NS1生物功能(J Virol,2009,83(4):1881—1891)。  相似文献   

5.
Abstract

The conformation of chemically synthesized acp3U is 60& 3′-endo, gauche+, whereas that of m1acp3Ψ is 60& 2′-endo, gauche+. We conclude that the difference in conformation probably imparts important local structures to their respective tRNA and rRNA.  相似文献   

6.
A domain of epiglucan was synthesized by beta-glucosidases. Two beta-glucosidases, an extracellular beta-glucosidase derived from Sclerotinia sclerotiorum grown on xylose, and a commercial lyophilized preparation of beta-glucosidase from Aspergillus niger, were used to synthesize gluco-oligosaccharides from cellobiose and, specially, beta-(1-6) branched beta-(1-3) gluco-oligosaccharides, corresponding to the structure of epiglucan. Gentiobiose, cellotriose, cellotetraose, beta-Glc-(1-3)-beta-Glc-(1-4)-Glc, beta-Glc-(1-6)-beta-Glc-(1-4)-Glc and beta-Glc-(1-6)-beta-Glc-(1-3)-Glc were synthesized from cellobiose by both enzymes. The latter compound was preferentially synthesized by the beta-glycosidase from Sclerotinia sclerotiorum. Under the best conditions, only 7 g l(-1) of beta-Glc-(1-6)-beta-Glc-(1-3)-Glc was synthesized by the beta-glycosidase from Aspergillus niger compared to 20 g l(-1) synthesized with beta-glycosidase from Sclerotinia sclerotiorum.  相似文献   

7.
(1–3)--d-Glucan synthase activity ofNeurospora crassa was localized to the plasma membrane by autoradiography of colloidal gold-labeled plasma membranes. The active site of glucan synthase for substrate hydrolysis was determined to be cytoplasmic facing. However, glucan synthase activity present in intact protoplasts was partially sensitive to Novozym 234 and to glutaraldehyde treatments, suggestive that enzyme activity is transmembrane. Enzyme activity also directed the formation of microfibrils in vitro. Taken together, these and previous results support the following scheme for glucan synthesis: 1. The sequential addition of glucose residues from UDP-glucose to glucan chains occurs on the cytoplasmically facing portion of glucan synthase. 2. As each glucan chain is synthesized, it is extruded to the extracytoplasmic side of the plasma membrane. 3. As each chain is extruded, it forms interchain hydrogen bonds with adjacent chains, resulting in glucan microfibril assembly.  相似文献   

8.
The molecular conformation of (1→3)-α-D-glucan tribenzoate (TBG) was studied by X-ray diffraction measurements coupled with a conformational analysis. Although the fiber pattern obtained was of very low crystallinity, the presence of a meridional reflection at the 5th layer line indicated that the TBG molecule took a five-fold helical conformation with a 19.63 A fiber repeat. A conformational analysis on the five-fold helix, which was done by calculating van der Waals’ repulsion energy between non-bonded atoms comprising the TBG chain, suggested that the most preferable energy-based conformation was –5/1, a left-handed five-fold helix.  相似文献   

9.
Two 3-(7′-theophyllyl)glycals, (IV) and (V), were synthesized by fusion of theophylline and the appropriate glycals in the presence of p-toluenesulfonic acid. The structure and stereochemistry of the glycals were determined mainly from NMR analysis of their dihydro and 1,6-anhydro derivatives.  相似文献   

10.
《Biomarkers》2013,18(2):112-119
The tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), a metabolite of the tobacco-specific nitrosamine (TSNA) 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), has been measured in urine samples from all participants aged 6 years and older from the National Health and Nutrition Examination Survey 2007–2008. Participants with a serum cotinine concentration of ≥10?ng/mL were identified as tobacco users, primarily cigarette smokers. Regression models were developed to calculate geometric mean NNAL concentrations adjusted for serum cotinine, urinary creatinine, cigarettes per day, and Federal Trade Commission tar values of the cigarettes smoked. Significant differences were found by gender (p?=?0.003) and race/ethnicity (p?=?0.022 for non-Hispanic white versus non-Hispanic black smokers), but not by menthol type of the cigarettes. Females and non-Hispanic white smokers had the highest adjusted means for urinary NNAL (353 and 336 pg/mL, respectively). The results from this study demonstrated significant relationships between NNAL concentrations and serum cotinine (p?<?0.001) and urine creatinine (p?<?0.001). The joint effect of linear and quadratic terms for number of cigarettes smoked per day was also statistically significant (p?=?0.001). In addition to addressing current NNK exposure levels, these results will form a baseline for future estimates of tobacco users’ exposure to this carcinogen.  相似文献   

11.
Δ(8)-Tetrahydrocannabinol (26), 3-(1',1'-dimethylbutyl)- (12), 3-(1',1'-dimethylpentyl)- (13), 3-(1',1'-dimethylhexyl)- (14) and 3-(1',1'-dimethylheptyl)-Δ(8)-tetrahydrocannabinol (15) have been converted into the corresponding 1-bromo-1-deoxy-Δ(8)-tetrahydrocannabinols (25, 8-11). This was accomplished using a protocol developed in our laboratory in which the trifluoromethanesulfonate of a phenol undergoes palladium mediated coupling with pinacolborane. Reaction of this dioxaborolane with aqueous-methanolic copper(II) bromide provides the aryl bromide. The affinities of these bromo cannabinoids for the cannabinoid CB(1) and CB(2) receptors were determined. All of these compounds showed selectivity for the CB(2) receptor and one of them, 1-bromo-1-deoxy-3-(1',1'-dimethylhexyl)-Δ(8)-tetrahydrocannabinol (10), exhibits 52-fold selectivity for this receptor with good (28nM) affinity.  相似文献   

12.
从实验室保藏的菌株中筛选获得Candida sp.PT2A,并通过18S rRNA鉴定为安大略假单胞菌Candida on-tarioensis。对C.ontarioensis不对称还原合成(R)-2-氯-1-(3-氯苯基)乙醇的发酵产酶条件和转化条件进行优化,确定了最适的发酵产酶条件和转化条件:温度30℃,初始pH 6.5,摇床转速180 r/min,菌体质量浓度200 g/L。采用2-氯-1-(3-氯苯基)乙酮质量浓度为10 g/L时,还原反应72 h,(R)-2-氯-1-(3-氯苯基)乙醇的e.e.值为99.9%,产率为99%;底物质量浓度提高至30 g/L时,产率下降为84.3%。采用十六烷基三甲基溴化铵(CTAB)对C.ontarioensis细胞进行通透性处理(CTAB g/L,4℃下处理20 min),在30 g/L底物下反应24 h,产物的e.e.和产率分别达到99.9%和97.5%。  相似文献   

13.
本文提出了一个包含两个氢键涉及单质子和双质子传递的简化模型系统(HONH_3HOH)~(-1),并用MINDO/3方法研究了质子传递过程,得到了有关两质子传递的势能面,其每一步都选择性地进行了几何优化.单质子传递的两个势阱是不对称的,它的位垒随着氢键变长而急剧增高.α质子的转移导致体系电荷的不均匀堆积,因此其位阻较大,通过β质子传递可大大降低它的位垒,在这种意义上双质子传递比单质子传递更可能.最后讨论了它和丝氨酸蛋白酶体系催化机理的关系.  相似文献   

14.
15.
A series of galactose-derived aryl enones were synthesised and screened against Mycobacterium tuberculosis H37Rv. Preliminary results were promising with MIC values in the range 1.56-12.5 μg/mL.  相似文献   

16.
Immunogold labeling was used to study the distribution of (1 → 3)-β-glucans and (1 → 3, 1 → 4)-β-glucans in the rice grain during cellularization of the endosperm. At approximately 3–5 d after pollination the syncytial endosperm is converted into a cellular tissue by three developmentally distinct types of wall. The initial free-growing anticlinal walls, which compartmentalize the syncytium into open-ended alveoli, are formed in the absence of mitosis and phragmoplasts. This stage is followed by unidirectional (centripetal) growth of the anticlinal walls mediated by adventitious phragmoplasts that form between adjacent interphase nuclei. Finally, the periclinal walls that divide the alveoli are formed in association with centripetally expanding interzonal phragmoplasts following karyokinesis. The second and third types of wall are formed alternately until the endosperm is cellular throughout. All three types of wall that cellularize the endosperm contain (1 → 3)-β-glucans but not (1 → 3, 1 → 4)-β-glucans, whereas cell walls in the surrounding maternal tissues contain considerable amounts of (1 → 3, 1 → 4)-β-glucans with (1 → 3)-β-glucans present only around plasmodesmata. The callosic endosperm walls remain thin and cell plate-like throughout the cellularization process, appearing to exhibit a prolonged juvenile state. Received: 7 January 1997 / Accepted: 11 February 1997  相似文献   

17.
18.
Three structural classes of (13)--d-glucans are encountered in some important soil-dwelling, plant-associated or human pathogenic bacteria. Linear (13)--glucans and side-chain-branched (13,12)--glucans are major constituents of capsular materials, with roles in bacterial aggregation, virulence and carbohydrate storage. Cyclic (13,16)--glucans are predominantly periplasmic, serving in osmotic adaptation. Curdlan, the linear (13)--glucan from Agrobacterium, has unique rheological and thermal gelling properties, with applications in the food industry and other sectors. This review includes information on the structure, properties and molecular genetics of the bacterial (13)--glucans, together with an overview of the physiology and biotechnology of curdlan production and applications of this biopolymer and its derivatives.  相似文献   

19.
Abstract

The reaction of the 2′,3′-lyxoepoxide (1) with ammonium azide gives two products; namely, the 3′-arabino azide (2a) and in low yield 2′-xylo azide (3a). After debenzoylation and reduction the resulting mixture of amines was resolved by chromatography on a weak cation exchanger, Amberlite IRC-50, and afforded crystalline 1-(3-amino-3-deoxy-β-D-arabinofuranosyl)uracil (2c) and 1-(2-amino-2-deoxy-β-D-xylofuranosyl)uracil (3c) in the ratio of 4:1.  相似文献   

20.
利用Clostridium acetobutylicum的丁酸激酶基因 (buk) 和磷酸转丁酰基酶基因(ptb),以及Thiocapsa pfennigii的PHA合成酶基因,设计了一条能够合成多种聚羟基烷酸的代谢途径,用构建的质粒转化大肠杆菌,获得了重组大肠杆菌菌株.前期的研究表明,在合适的前体物条件下,该重组大肠杆菌能够合成包括聚羟基丁酸、聚(羟基丁酸-戊酸)等多种生物聚酯[Liu and Steinbüchel, Appl. Environ. Microbiol. 66739-743].利用该重组大肠杆菌,通过生物催化作用合成了3-巯基丙酸的同型共聚酯,同时利用该重组大肠杆菌还获得了含3-巯基丙酸单体的多种异型共聚物.实验首先研究了3-巯基丙酸对大肠杆菌生长的影响,在此基础上优化了培养过程中添加3-巯基丙酸的时机和浓度,结果表明,在实验的条件下,细胞合成聚(3-巯基丙酸)可达6.7%(占细胞干重),合成聚(3-羟基丁酸-3-巯基丙酸)(分子中3-巯基丙酸3-羟基丁酸=31)可达24.3%.实验进一步研究了同时或分别表达以上3个基因的重组大肠杆菌合成聚合物的能力,结果表明只有当3个基因同时表达时才能合成聚合物,说明3个基因对合成过程是必须的,从而表明了合成途径是按照设计的路线进行的.还通过GC/MS、GPC、IR等手段对合成的化合物进行了定性的研究.聚(3-巯基丙酸)或聚(3-羟基丁酸-3-巯基丙酸)等聚酯属于一类新型生物聚合物,它在分子骨架中含有硫酯键,不同于聚羟基烷酸酯的氧酯键,从而具有显著不同的物理、化学、光学等性质和具有重要的潜在应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号