首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The key hydrolytic enzymes of the endocannabinoid system, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), are potential targets for various therapeutic applications. In this paper, we present more extensively the results of our previous work on piperazine and piperidine carboxamides and carbamates as FAAH and MAGL inhibitors. The best compounds of these series function as potent and selective MAGL/FAAH inhibitors or as dual FAAH/MAGL inhibitors at nanomolar concentrations. This study revealed that MAGL inhibitors should comprise leaving-groups with a conjugate acid pKa of 8–10, while diverse leaving groups are tolerated for FAAH inhibitors.  相似文献   

2.
Tetrahymena thermophila is a model organism for molecular and cellular biology. Previous studies from our group showed that Tetrahymena contains major components of the endocannabinoid system, such as various endocannabinoids and FAAH. In mammalian cells the endocannabinoid 2-arachidonoylglycerol is inactivated mainly by MAGL. In this study we showed that 2-arachidonoylglycerol and 2-oleoylglycerol are hydrolyzed by the combined actions of MAGL and FAAH. MAGL-like activity was examined in the presence of FAAH specific inhibitors, URB597 or AM374 and showed optimum pH of 8-9, apparent K(M) of 14.1μM and V(max) of 5.8nmol/min×mg. The enzyme was present in membrane bound and cytosolic isoforms; molecular mass was determined at ~45 and ~40kDa. MAGL and FAAH could also inactivate endogenous signaling lipids, which might play an important role in Tetrahymena as suggested in mammals. Tetrahymena could be used as a model system for testing drugs targeting enzymes of the endocannabinoid system.  相似文献   

3.
The Peruvian plant Lepidium meyenii (Maca) has been shown to possess neuroprotective activity both in vitro and in vivo [13]. Previous studies have also demonstrated the activity of the pentane extract and its macamides, the most representative lipophilic constituents of Maca, in the endocannabinoid system as fatty acid amide hydrolase (FAAH) inhibitors. One of the most active macamides, N-3-methoxybenzyl-linoleamide [4, 5], was studied to determine its mechanism of interaction with FAAH and whether it has inhibitory activity on mono-acyl glycerol lipase (MAGL), the second enzyme responsible for endocannabinoid degradation [6]. Macamide concentrations from 1 to 100 μM were tested using FAAH and MAGL inhibitor assay methods and showed no effect on MAGL. Tests with other conditions were performed in order to characterize the inhibitory mechanism of FAAH inhibition. N-3-methoxybenzyl-linoleamide displayed significant time-dependent and dose-dependent FAAH inhibitory activity. The mechanism of inhibition was most likely irreversible or slowly reversible. These results suggest the potential application of macamides isolated from Maca as FAAH inhibitors, as they might act on the central nervous system to provide analgesic, anti-inflammatory, or neuroprotective effects, by modulating the release of neurotransmitters.  相似文献   

4.
AimsThis review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential against neuropathological states including traumatic brain injury; Alzheimer's, Huntington's, and Parkinson's diseases; and stroke.Main methodsThis proposition is supported by data from numerous in vitro and in vivo experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the endogenous cannabinoid (“endocannabinoid”) system and selective FAAH inhibitors.Key findingsThe systems biology of endocannabinoid signaling involves two main cannabinoid receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine (“anandamide”) (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid system is capable of activating distinct signaling pathways on-demand in response to pathogenic events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data suggest that endocannabinoid system modulation at discrete targets is a promising pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response. Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways downstream from cannabinoid receptors have been shown to promote neuronal maintenance and function.SignificanceThis therapeutic modality has the potential to offer site- and event-specific neuroprotection under conditions where endocannabinoids are being produced as part of a physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists to the central nervous system may activate CB receptors indiscriminately and invite unwanted psychotrophic effects.  相似文献   

5.
Cannabinoid receptors and their endogenous ligands are potent inhibitors of neurotransmitter release in the brain. Here, we show that in a rat model of Parkinson's disease induced by unilateral nigral lesion with 6-hydroxydopamine (6-OHDA), the striatal levels of the endocannabinoid anandamide (AEA) were increased, while the activity of its membrane transporter and hydrolase (fatty-acid amide hydrolase, FAAH) were decreased. These changes were not observed in the cerebellum of the same animals. Moreover, the frequency and amplitude of glutamate-mediated spontaneous excitatory post-synaptic currents were augmented in striatal spiny neurones recorded from parkinsonian rats. Remarkably, the anomalies in the endocannabinoid system, as well as those in glutamatergic activity, were completely reversed by chronic treatment of parkinsonian rats with levodopa, and the pharmacological inhibition of FAAH restored a normal glutamatergic activity in 6-OHDA-lesioned animals. Thus, the increased striatal levels of AEA may reflect a compensatory mechanism trying to counteract the abnormal corticostriatal glutamatergic drive in parkinsonian rats. However, this mechanism seems to be unsuccessful, since spontaneous excitatory activity is still higher in these animals. Taken together, these data show that anomalies in the endocannabinoid system induced by experimental parkinsonism are restricted to the striatum and can be reversed by chronic levodopa treatment, and suggest that inhibition of FAAH might represent a possible target to decrease the abnormal cortical glutamatergic drive in Parkinson's disease.  相似文献   

6.
7.
Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme that degrades the fatty acid amide family of signaling lipids, including the endocannabinoid anandamide. Genetic or pharmacological inactivation of FAAH leads to analgesic, anti-inflammatory, anxiolytic, and antidepressant phenotypes in rodents without showing the undesirable side effects observed with direct cannabinoid receptor agonists, indicating that FAAH may represent an attractive therapeutic target for treatment of pain, inflammation, and other central nervous system disorders. However, the FAAH inhibitors reported to date lack drug-like pharmacokinetic properties and/or selectivity. Herein we describe piperidine/piperazine ureas represented by N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750) and N-phenyl-4-(quinolin-2-ylmethyl)piperazine-1-carboxamide (PF-622) as a novel mechanistic class of FAAH inhibitors. PF-750 and PF-622 show higher in vitro potencies than previously established classes of FAAH inhibitors. Rather unexpectedly based on the high chemical stability of the urea functional group, PF-750 and PF-622 were found to inhibit FAAH in a time-dependent manner by covalently modifying the enzyme's active site serine nucleophile. Activity-based proteomic profiling revealed that PF-750 and PF-622 were completely selective for FAAH relative to other mammalian serine hydrolases. We hypothesize that this remarkable specificity derives, at least in part, from FAAH's special ability to function as a C(O)-N bond hydrolase, which distinguishes it from the vast majority of metabolic serine hydrolases in mammals that are restricted to hydrolyzing esters and/or thioesters. The piperidine/piperazine urea may thus represent a privileged chemical scaffold for the synthesis of FAAH inhibitors that display an unprecedented combination of potency and selectivity for use as potential analgesic and anxiolytic/antidepressant agents.  相似文献   

8.
The endocannabinoid system modulates numerous physiological processes including nociception and reproduction. Anandamide (AEA) is an endocannabinoid that is inactivated by cellular uptake followed by intracellular hydrolysis by fatty acid amide hydrolase (FAAH). Recently, FAAH-like anandamide transporter (FLAT), a truncated and catalytically-inactive variant of FAAH, was proposed to function as an intracellular AEA carrier and mediate its delivery to FAAH for hydrolysis. Pharmacological inhibition of FLAT potentiated AEA signaling and produced antinociceptive effects. Given that endocannabinoids produce analgesia through central and peripheral mechanisms, the goal of the current work was to examine the expression of FLAT in the central and peripheral nervous systems. In contrast to the original report characterizing FLAT, expression of FLAT was not observed in any of the tissues examined. To investigate the role of FLAT as a putative AEA binding protein, FLAT was generated from FAAH using polymerase chain reaction and further analyzed. Despite its low cellular expression, FLAT displayed residual catalytic activity that was sensitive to FAAH inhibitors and abolished following mutation of its catalytic serine. Overexpression of FLAT potentiated AEA cellular uptake and this appeared to be dependent upon its catalytic activity. Immunofluorescence revealed that FLAT localizes primarily to intracellular membranes and does not contact the plasma membrane, suggesting that its capability to potentiate AEA uptake may stem from its enzymatic rather than transport activity. Collectively, our data demonstrate that FLAT does not serve as a global intracellular AEA carrier, although a role in mediating localized AEA inactivation in mammalian tissues cannot be ruled out.  相似文献   

9.
Summary. Fatty acid amide hydrolase (FAAH), a membrane-anchored enzyme responsible for the termination of endocannabinoid signalling, is an attractive target for treating conditions such as pain and anxiety. Inhibitors of the enzyme, optimized using rodent FAAH, are known but their pharmacology and medicinal chemistry properties on the human FAAH are missing. Therefore recombinant human enzyme would represent a powerful tool to evaluate new drug candidates. However, the production of high amounts of enzyme is hampered by the known refractiveness of FAAH to overexpression. Here, we report the successful overexpression of rat and human FAAH as a fusion to the E. coli maltose-binding protein, retaining catalytic properties of native FAAH. Several known FAAH inhibitors were tested and differences in their potencies toward the human and rat FAAH were found, underscoring the importance of using a human FAAH in the development of inhibitors. Authors’ address: Didier M. Lambert, Unité de Chimie pharmaceutique et de Radiopharmacie, Université catholique de Louvain, Avenue E. Mounier 73.40, 1200 Bruxelles, Belgique  相似文献   

10.
11.
This review focuses on the behavioral pharmacology of endogenous cannabinoids (endocannabinoids) and indirect-acting cannabinoid agonists that elevate endocannabinoid tone by inhibiting the activity of metabolic enzymes. Similarities and differences between prototype cannabinoid agonists, endocannabinoids and inhibitors of endocannabinoid metabolism are discussed in the context of endocannabinoid pharmacokinetics in vivo. The distribution and function of cannabinoid and non-CB1/CB2 receptors are also covered, with emphasis on their role in disorders characterized by dopamine dysfunction, such as drug abuse and Parkinson's disease. Finally, evidence is presented to suggest that FAAH inhibitors lack the abuse liability associated with CB1 agonists, although they may modify the addictive properties of other drugs, such as alcohol.  相似文献   

12.
The endogenous cannabinoid anandamide (AEA) exerts the majority of its effects at CB1 and CB2 receptors and is degraded by fatty acid amide hydrolase (FAAH). FAAH KO mice and animals treated with FAAH inhibitors are impaired in their ability to hydrolyze AEA and other non-cannabinoid lipid signaling molecules, such as oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). AEA and these other substrates activate non-cannabinoid receptor systems, including TRPV1 and PPAR-α receptors. In this mini review, we describe the functional consequences of FAAH inhibition on nicotine reward and dependence as well as the underlying endocannabinoid and non-cannabinoid receptor systems mediating these effects. Interestingly, FAAH inhibition seems to mediate nicotine dependence differently in mice and rats. Indeed, pharmacological and genetic FAAH disruption in mice enhances nicotine reward and withdrawal. However, in rats, pharmacological blockade of FAAH significantly inhibits nicotine reward and has no effect in nicotine withdrawal. Studies suggest that non-cannabinoid mechanisms may play a role in these species differences.  相似文献   

13.
Fatty acid amide hydrolase (FAAH), the enzyme responsible for terminating signaling by the endocannabinoid anandamide, plays an important role in the endocannabinoid system, and FAAH inhibitors are attractive drugs for pain, addiction, and neurological disorders. The synthesis, radiosynthesis, and evaluation, in vitro and ex vivo in rat, of an 18F-radiotracer designed to image FAAH using positron emission tomography (PET) is described.Fluorine-18 labelled 3-(4,5-dihydrooxazol-2-yl)phenyl (5-fluoropentyl)carbamate, [18F]5, was synthesized at high specific activity in a one-pot three step reaction using a commercial module with a radiochemical yield of 17–22% (from [18F]fluoride). In vitro assay using rat brain homogenates showed that 5 inhibited FAAH in a time-dependent manner, with an IC50 value of 0.82 nM after a preincubation of 60 min. Ex vivo biodistribution studies and ex vivo autoradiography in rat brain demonstrated that [18F]5 had high brain penetration with standard uptake values of up to 4.6 and had a regional distribution which correlated with reported regional FAAH enzyme activity. Specificity of binding to FAAH with [18F]5 was high (>90%) as demonstrated by pharmacological challenges with potent and selective FAAH inhibitors and was irreversible as demonstrated by radioactivity measurements on homogenized brain tissue extracts.We infer from these results that [18F]5 is a highly promising candidate radiotracer with which to image FAAH in human subjects using PET and clinical studies are proceeding.  相似文献   

14.
The endocannabinoid anandamide exerts neurobehavioral, cardiovascular, and immune-regulatory effects through cannabinoid receptors (CB). Fatty acid amide hydrolase (FAAH) is an enzyme responsible for the in vivo degradation of anandamide. Recent experimental studies have suggested that targeting the endocannabinergic system by FAAH inhibitors is a promising novel approach for the treatment of anxiety, inflammation, and hypertension. In this study, we compared the cardiac performance of FAAH knockout (FAAH-/-) mice and their wild-type (FAAH+/+) littermates and analyzed the hemodynamic effects of anandamide using the Millar pressure-volume conductance catheter system. Baseline cardiovascular parameters, systolic and diastolic function at different preloads, and baroreflex sensitivity were similar in FAAH-/- and FAAH+/+ mice. FAAH-/- mice displayed increased sensitivity to anandamide-induced, CB1-mediated hypotension and decreased cardiac contractility compared with FAAH(+/+) littermates. In contrast, the hypotensive potency of synthetic CB1 agonist HU-210 and the level of expression of myocardial CB1 were similar in the two strains. The myocardial levels of anandamide and oleoylethanolamide, but not 2-arachidonylglycerol, were increased in FAAH-/- mice compared with FAAH+/+ mice. These results indicate that mice lacking FAAH have a normal hemodynamic profile, and their increased responsiveness to anandamide-induced hypotension and cardiodepression is due to the decreased degradation of anandamide rather than an increase in target organ sensitivity to CB1 agonists.  相似文献   

15.
FAAH inhibitors offer safety advantages by augmenting the anandamide levels “on demand” to promote neuroprotective mechanisms without the adverse psychotropic effects usually seen with direct and chronic activation of the CB1 receptor. FAAH is an enzyme implicated in the hydrolysis of the endocannabinoid N-arachidonoylethanolamine (AEA), which is a partial agonist of the CB1 receptor. Herein, we report the discovery of a new series of highly potent and selective carbamate FAAH inhibitors and their evaluation for neuroprotection. The new inhibitors showed potent nanomolar inhibitory activity against human recombinant and purified rat FAAH, were selective (>1000-fold) against serine hydrolases MGL and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Evaluation of FAAH inhibitors 9 and 31 using the in vitro competitive activity-based protein profiling (ABPP) assay confirmed that both inhibitors were highly selective for FAAH in the brain, since none of the other FP-reactive serine hydrolases in this tissue were inhibited by these agents. Our design strategy followed a traditional SAR approach and was supported by molecular modeling studies based on known FAAH cocrystal structures. To rationally design new molecules that are irreversibly bound to FAAH, we have constructed “precovalent” FAAH-ligand complexes to identify good binding geometries of the ligands within the binding pocket of FAAH and then calculated covalent docking poses to select compounds for synthesis. FAAH inhibitors 9 and 31 were evaluated for neuroprotection in rat hippocampal slice cultures. In the brain tissue, both inhibitors displayed protection against synaptic deterioration produced by kainic acid-induced excitotoxicity. Thus, the resultant compounds produced through rational design are providing early leads for developing therapeutics against seizure-related damage associated with a variety of disorders.  相似文献   

16.
N-arachidonoyl-glycine (NAGly) has been recently identified in rodent tissues and found to exhibit analgesic activity in vivo. NAGly is a potent inhibitor of the fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for the degradation of the endocannabinoid N-arachidonoyl-ethanolamine (anandamide), and was shown recently to elevate the blood levels of the this analgesic compound. We have synthesized several N-arachidonoyl-amino acids of potential natural occurrence, as well as the D- and L-isomers of N-arachidonoyl-alanine, and have tested their activity on FAAH preparations from mouse, rat, and human cell lines, and from mouse or rat brain. The results indicate that the relative potency and enantioselectivity of N-arachidonoyl-amino acids as FAAH inhibitors depend on the animal species. Thus, whilst NAGly is the most potent compound on the rat and mouse enzymes, N-arachidonoyl-isoleucine is active only on human FAAH and N-arachidonoyl-alanine enantiomers show a varying degree of potency. Taken together, these data support the view that an enhancement of endogenous anandamide levels underlies in part the analgesic effects of NAGly in rodents.  相似文献   

17.
The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recent work from our group has revealed that pharmacological inhibition of FABPs reduces inflammatory pain in mice. The goal of the current work was to explore the effects of FABP inhibition upon nociception in diverse models of pain. We developed inhibitors with differential affinities for FABPs to elucidate the subtype(s) that contributes to the antinociceptive effects of FABP inhibitors.Inhibition of FABPs reduced nociception associated with inflammatory, visceral, and neuropathic pain. The antinociceptive effects of FABP inhibitors mirrored their affinities for FABP5, while binding to FABP3 and FABP7 was not a predictor of in vivo efficacy. The antinociceptive effects of FABP inhibitors were mediated by cannabinoid receptor 1 (CB1) and peroxisome proliferator-activated receptor alpha (PPARα) and FABP inhibition elevated brain levels of AEA, providing the first direct evidence that FABPs regulate brain endocannabinoid tone. These results highlight FABPs as novel targets for the development of analgesic and anti-inflammatory therapeutics.  相似文献   

18.
Mulder AM  Cravatt BF 《Biochemistry》2006,45(38):11267-11277
Lipid transmitters are tightly regulated by a balance of biosynthetic and degradative enzymes. Termination of the activity of the N-acyl ethanolamine (NAE) class of lipid-signaling molecules, including the endocannabinoid anandamide (AEA), is principally mediated by the integral membrane enzyme fatty acid amide hydrolase (FAAH) in vivo. FAAH(-/-) mice are highly sensitized to the pharmacological effects of AEA; however, these animals eventually recover from AEA treatment, implying the existence of alternative routes for NAE metabolism. Here, we have pursued the characterization of these pathways by profiling the metabolome of FAAH(-/-) mice treated with AEA. Multiple AEA-induced metabolites were observed in brains from FAAH(-/-) mice, including a major product with a mass shift of +165 Da (m/z 513). The structure of this product was determined to be O-phosphorylcholine (PC)-AEA. Analysis of untreated mice identified PC-NAEs as endogenous constituents of the central nervous system (CNS) that were highly elevated in FAAH(-/-) animals. PC-NAEs were very poor substrates for FAAH; however, a vanadate-sensitive enzymatic activity was detected in brain membranes that converted PC-NAEs back to their parent NAEs. The choline-specific phosphodiesterase NPP6 was identified as a candidate enzyme responsible for this activity. These data indicate the presence of a complete metabolic pathway for the production and degradation of PC-NAEs in the CNS that constitutes an alternative route for endocannabinoid metabolism.  相似文献   

19.
Anandamide (N -arachidonoylethanolamine, AEA) is a major endocannabinoid, shown to impair mouse pregnancy and embryo development and to induce apoptosis in blastocysts. Here, we review the roles of AEA, of the AEA-binding cannabinoid (CB) receptors, of the selective AEA membrane transporter (AMT), and of the AEA-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), in human gestation. In particular, we discuss the interplay between the endocannabinoid system and the hormone-cytokine array involved in the control of human pregnancy, showing that the endocannabinoids take part in the immunological adaptation occurring during early pregnancy. In this line, we discuss the critical role of FAAH in human peripheral lymphocytes, showing that the expression of this enzyme is regulated by progesterone, Th1 and Th2 cytokines, which also regulate fertility. Moreover, we show that AEA and the other endocannabinoid, 2-arachidonoylglycerol, inhibit the release of the fertility-promoting cytokine leukemia inhibitory factor from human lymphocytes. Taken together, low FAAH and consistently high blood levels of AEA, but not CB receptors or AMT, can be early (<8 weeks of gestation) markers of spontaneous abortion, potentially useful as diagnostic tools for large-scale, routine monitoring of gestation in humans.  相似文献   

20.
Monoacylglycerol lipase is a serine hydrolase that plays a major role in the degradation of the endocannabinoid neurotransmitter 2-arachidonoylglycerol. A wide number of MAGL inhibitors are reported in literature; however, many of them are characterised by an irreversible mechanism of action and this behavior determines an unwanted chronic MAGL inactivation, which acquires a functional antagonism of the endocannabinoid system. The possible use of reversible MAGL inhibitors has only recently been explored, due to the lack of known compounds possessing efficient reversible inhibitory activities. In this work, we report a new series of terphenyl-2-methyloxazol-5(4H)-one derivatives characterised by a reversible MAGL-inhibition mechanism. Among them, compound 20b showed to be a potent MAGL reversible inhibitor (IC50?=?348?nM) with a good MAGL/FAAH selectivity. Furthermore, this compound showed antiproliferative activities against two different cancer cell lines that overexpress MAGL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号