首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, the HAIRY MERISTEM (HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non-angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type-II HAM members are widely present in angiosperms, whereas type-I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non-angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type-II HAM genes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.  相似文献   

3.
Among land plants, mitochondrial and plastid group II introns occasionally encode proteins called maturases that are important for splicing. Angiosperm nuclear genomes also encode maturases that are targeted to the organelles, but it is not known whether nucleus-encoded maturases exist in other land plant lineages. To examine the evolutionary diversity and history of this essential gene family, we searched for maturase homologs in recently sequenced nuclear and mitochondrial genomes from diverse land plants. We found that maturase content in mitochondrial genomes is highly lineage specific, such that orthologous maturases are rarely shared among major land plant groups. The presence of numerous mitochondrial pseudogenes in the mitochondrial genomes of several species implies that the sporadic maturase distribution is due to frequent inactivation and eventual loss over time. We also identified multiple maturase paralogs in the nuclear genomes of the lycophyte Selaginella moellendorffii, the moss Physcomitrella patens, and the representative angiosperm Vitis vinifera. Phylogenetic analyses of organelle- and nucleus-encoded maturases revealed that the nuclear maturase genes in angiosperms, lycophytes, and mosses arose by multiple shared and independent transfers of mitochondrial paralogs to the nuclear genome during land plant evolution. These findings indicate that plant mitochondrial maturases have experienced a surprisingly dynamic history due to a complex interaction of multiple evolutionary forces that affect the rates of maturase gain, retention, and loss.  相似文献   

4.
5.
6.
7.
Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis   总被引:7,自引:0,他引:7  
Tian C  Wan P  Sun S  Li J  Chen M 《Plant molecular biology》2004,54(4):519-532
  相似文献   

8.
Cyclic nucleotide-gated ion channels (CNGCs) are calcium-permeable channels that are involved in various biological functions. Nevertheless, phylogeny and function of plant CNGCs are not well understood. In this study, 333 CNGC genes from 15 plant species were identified using comprehensive bioinformatics approaches. Extensive bioinformatics analyses demonstrated that CNGCs of Group IVa were distinct to those of other groups in gene structure and amino acid sequence of cyclic nucleotide-binding domain. A CNGC-specific motif that recognizes all identified plant CNGCs was generated. Phylogenetic analysis indicated that CNGC proteins of flowering plant species formed five groups. However, CNGCs of the non-vascular plant Physcomitrella patens clustered only in two groups (IVa and IVb), while those of the vascular non-flowering plant Selaginella moellendorffii gathered in four (IVa, IVb, I and II). These data suggest that Group IV CNGCs are most ancient and Group III CNGCs are most recently evolved in flowering plants. Furthermore, silencing analyses revealed that a set of CNGC genes might be involved in disease resistance and abiotic stress responses in tomato and function of SlCNGCs does not correlate with the group that they are belonging to. Our results indicate that Group IVa CNGCs are structurally but not functionally unique among plant CNGCs.  相似文献   

9.
10.
11.
The role of GRAS proteins in plant signal transduction and development   总被引:32,自引:0,他引:32  
Bolle C 《Planta》2004,218(5):683-692
GRAS proteins are a recently discovered family of plant-specific proteins named after GAI, RGA and SCR, the first three of its members isolated. Although the Arabidopsis genome encodes at least 33 GRAS protein family members only a few GRAS proteins have been characterized so far. However, it is becoming clear that GRAS proteins exert important roles in very diverse processes such as signal transduction, meristem maintenance and development. Here we present a survey of the different GRAS proteins and review the current knowledge of the function of individual members of this protein family.  相似文献   

12.
Large-scale analysis of the GRAS gene family in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
  相似文献   

13.
Hattori M  Hasebe M  Sugita M 《Gene》2004,343(2):305-311
A large gene family encoding proteins with a pentatricopeptide repeat (PPR) motif exists in flowering plants but not in algae, fungi, or animals. This suggests that PPR protein genes expanded vastly during the evolution of the land plants. To investigate this possibility, we analysed PPR protein genes in the basal land plant, the moss Physcomitrella patens. An extensive survey of the Physcomitrella expressed sequence tag (EST) databases revealed 36 ESTs encoding PPR proteins. This indicates that a large gene family of PPR proteins originated before the divergence of the vascular plant and moss lineages. We also characterized five full-length cDNAs encoding PPR proteins, designated PPR513-10, PPR566-6, PPR868-14, PPR986-12, and PPR423-6. Intracellular localization analysis demonstrated two PPR proteins in chloroplasts (cp), whereas the cellular localization of the other three PPR proteins is unclear. The genes of the cp-localized PPR513-10 and PPR566-6 were expressed differentially in protonemata grown under different light-dark conditions, suggesting they have distinctive functions in cp. This is the first report and analysis of genes encoding PPR proteins in bryophytes.  相似文献   

14.
15.
GRAS家族是一类植物特有的转录调控因子, 已有报道表明该家族基因在植物生长发育和光信号转导过程中具有重要作用。目前在拟南芥(Arabidopsis thaliana)基因组中已鉴定了33个GRAS家族基因。利用功能基因组学和生物信息学手段,通过基因芯片数据挖掘和基因功能预测, 对拟南芥GRAS家族基因在渗透和干旱胁迫过程中的应答模式进行了初步探索, 提出了一类响应渗透胁迫和干旱胁迫的拟南芥GRAS家族基因。以SCL13为例, 利用基因芯片相关性和GO分析, 对其在渗透胁迫信号转导过程中可能的调控机制进行了预测和分析。这一研究将为阐明GRAS家族基因参与水分胁迫的分子机制提供新的思路, 同时也为植物抗逆分子育种提供候选基因。  相似文献   

16.
植物GRAS蛋白结构和功能研究进展   总被引:1,自引:0,他引:1  
畅文军  刘习文  张治礼 《生命科学》2013,(11):1045-1052
GRAS蛋白是一类植物特有的蛋白家族,是许多重要生长发育过程中的关键调控蛋白,如赤霉素信号转导、光信号转导、根的发育、根瘤和菌根形成以及分生组织形成等。从蛋白分子结构、分类及生理功能等方面综述了植物GRAS蛋白的最新研究进展,并对未来的研究方向进行了讨论。  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号