首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A structure–activity relationship study was conducted of several CD4 mimicking small molecules which block the interaction between HIV-1 gp120 and CD4. These CD4 mimics induce a conformational change in gp120, exposing its co-receptor-binding site. This induces a highly synergistic interaction in the use in combination with a co-receptor CXCR4 antagonist and reveals a pronounced effect on the dynamic supramolecular mechanism of HIV-1 entry.  相似文献   

2.
Derivatives of CD4 mimics were designed and synthesized to interact with the conserved residues of the Phe43 cavity in gp120 to investigate their anti-HIV activity, cytotoxicity, and CD4 mimicry effects on conformational changes of gp120. Significant potency gains were made by installation of bulky hydrophobic groups into the piperidine moiety, resulting in discovery of a potent compound with a higher selective index and CD4 mimicry. The current study identified a novel lead compound 11 with significant anti-HIV activity and lower cytotoxicity than those of known CD4 mimics.  相似文献   

3.
Several small molecule CD4 mimics have been reported previously as HIV-1 entry inhibitors, which block the interaction between the Phe43 cavity of HIV-1 gp120 and the host CD4. Known CD4 mimics such as NBD-556 possess significant anti-HIV activity but are less soluble in water, perhaps due to their hydrophobic aromatic ring-containing structures. Compounds with a pyridinyl group in place of the phenyl group in these molecules have been designed and synthesized in an attempt to increase the hydrophilicity. Some of these new CD4 mimics, containing a tetramethylpiperidine ring show significantly higher water solubility than NBD-556 and have high anti-HIV activity and synergistic anti-HIV activity with a neutralizing antibody. The CD4 mimic that has a cyclohexylpiperidine ring and a 6-fluoropyridin-3-yl ring has high anti-HIV activity and no significant cytotoxicity. The present results will be useful in the future design and development of novel soluble-type molecule CD4 mimics.  相似文献   

4.
CD4 mimics such as YIR-821 and its derivatives are small molecules which inhibit the interaction between the Phe43 cavity of HIV-1 gp120 with host CD4, an interaction that is involved in the entry of HIV to cells. Known CD4 mimics generally possess three structural features, an aromatic ring, an oxalamide linker and a piperidine moiety. We have shown previously that introduction of a cyclohexyl group and a guanidine group into the piperidine moiety and a fluorine atom at the meta-position of the aromatic ring leads to a significant increase in the anti-HIV activity. In the current study, the effects of conformational flexibility were investigated by introduction of an indole-type group in the junction between the oxalamide linker and the aromatic moiety or by replacement of the oxalamide linker with a glycine linker. This led to the development of compounds with high anti-HIV activity, showing the importance of the junction region for the expression of high anti-HIV activity. The present data are expected to be useful in the future design of novel CD4 mimic molecules.  相似文献   

5.
Several CD4 mimics have been reported as HIV-1 entry inhibitors that can intervene in the interaction between a viral envelope glycoprotein gp120 and a cell surface protein CD4. Our previous SAR studies led to a finding of a highly potent analogue 3 with bulky hydrophobic groups on a piperidine moiety. In the present study, the aromatic ring of 3 was modified systematically in an attempt to improve its antiviral activity and CD4 mimicry which induces the conformational changes in gp120 that can render the envelope more sensitive to neutralizing antibodies. Biological assays of the synthetic compounds revealed that the introduction of a fluorine group as a meta-substituent of the aromatic ring caused an increase of anti-HIV activity and an enhancement of a CD4 mimicry, and led to a novel compound 13a that showed twice as potent anti-HIV activity compared to 3 and a substantial increase in a CD4 mimicry even at lower concentrations.  相似文献   

6.
HIV entry is determined by one or more chemokine receptors. T cell-tropic viruses bind CXCR4, whereas macrophage-tropic viruses use CCR5 and other CCRs. Infection with CXCR4 and CCR5-tropic HIV requires initial binding to CD4, and chemotaxis induced by the CCR5-tropic envelope has been reported to be strictly dependent on CD4 binding. We demonstrate that, in contrast to CD4-dependent gp120 signaling via CCR5, envelope signaling through CXCR4 is CD4 independent, inducing chemotaxis of both CD4 and CD8 T cells. Signaling by virus or soluble envelope through CXCR4 may affect pathogenesis by attracting and activating target and effector cells.  相似文献   

7.
Studies of the mechanism of HIV entry and transmission have identified multiple new targets for drug development. A range of inhibitors have demonstrated potent antiretroviral activity by interfering with CD4-gp120 interaction, coreceptor binding or viral-cell fusion in preclinical and clinical studies. One of these agents, fusion inhibitor enfuvirtide, is already in clinical use. Here we review the progress in the development of specific entry inhibitors as novel therapeutics. The potential of entry inhibitors as topical microbicides to block HIV transmission is also discussed. Foundation items: NIH (AI065413 and AI041346) and the 973 Program (2006CB504200) for financial support.  相似文献   

8.
To date, several small molecules of CD4 mimics, which can suppress competitively the interaction between an HIV-1 envelope glycoprotein gp120 and a cellular surface protein CD4, have been reported as viral entry inhibitors. A lead compound 2 (YYA-021) with relatively high potency and low cytotoxicity has been identified previously by SAR studies. In the present study, the pharmacokinetics of the intravenous administration of compound 2 in rats and rhesus macaques is reported. The half-lives of compound 2 in blood in rats and rhesus macaques suggest that compound 2 shows wide tissue distribution and relatively high distribution volumes. A few hours after the injection, both plasma concentrations of compound 2 maintained micromolar levels, indicating it might have promise for intravenous administration when used combinatorially with anti-gp120 monoclonal antibodies.  相似文献   

9.
Follicular dendritic cells (FDCs) represent a major reservoir of HIV, and active infection occurs surrounding these cells, suggesting that this microenvironment is highly conducive to virus transmission. Because CD4 T cells around FDCs in germinal centers express the HIV coreceptor, CXCR4, whereas CD4 lymphocytes in many other sites do not, it prompted the hypothesis that FDCs may increase CXCR4 expression on CD4 T cells, thereby facilitating infection. To test this, HIV receptor/coreceptor expression was determined on CD4 T cells cultured with or without FDCs, and its consequence to infection was assessed by measuring virus binding and entry. FDCs had little effect on CCR5 or CD4 expression but increased CXCR4 expression on CD4 T cells. FDC-mediated up-regulation of CXCR4 on CD4 T cells occurred by 24 h and was sustained for at least 96 h in vitro, and FDC-CD4 T cell contact was necessary. Importantly, increased CXCR4 expression directly correlated with increased binding and entry of HIV-1 X4 isolates. Furthermore, CD4(+)CD57(+) germinal center T cells expressed high levels of CXCR4 and supported enhanced entry of X4 HIV compared with other CD4 T cells from the same tissue. Thus, in addition to serving as a reservoir of infectious virus, FDCs render surrounding germinal center T cells highly susceptible to infection with X4 isolates of HIV-1.  相似文献   

10.
HIV-1 external envelope glycoprotein gp120 inhibits adenosine deaminase (ADA) binding to its cell surface receptor in lymphocytes, CD26, by a mechanism that does not require the gp120-CD4 interaction. To further characterize this mechanism, we studied ADA binding to murine clones stably expressing human CD26 and/or human CD4, and transiently expressing human CXCR4. In this heterologous model, we show that both recombinant gp120 and viral particles from the X4 HIV-1 isolate IIIB inhibited the binding of ADA to wild-type or catalytically inactive forms of CD26. In cells lacking human CXCR4 expression, this gp120-mediated inhibition of ADA binding to human CD26 was completely dependent on the expression of human CD4. In contrast, when cells were transfected with human CXCR4 the inhibitory effect of gp120 was significantly enhanced and was not blocked by anti-CD4 antibodies. These data suggest that the interaction of gp120 with CD4 or CXCR4 is required for efficient inhibition of ADA binding to CD26, although in the presence of CXCR4 the interaction of gp120 with CD4 may be dispensable.  相似文献   

11.
Activation of T-lymphocytes is an important component of inflammatory and infectious processes, including HIV infection. It is regulated via the actions of various cell-surface receptors, including CD4 and CXCR4. We examined the roles of CD4 and CXCR4 in the adhesive interaction of CD4+T-cells with the vascular endothelium. CD4+Jurkat cells were incubated in the presence or absence of anti-CD4 to stimulate CD4, or with SDF-1 alpha, a cognate ligand of CXCR4. Stimulation of CD4 or CXCR4 each significantly enhanced cell adhesion. We next stimulated the two receptors together, using gp120, a component of HIV. This enhanced cell adhesion was greater than stimulation of CD4 or CXCR4 individually. Western blotting revealed that stimulation of CXCR4 by SDF-1 alpha significantly increased the phosphorylation of ERK1/2 in Jurkat cells. Treatment with anti-CD4 also activated ERK1/2, although to a lesser extent. When the expression of CD4 was reduced by siRNA transfection, both CD4-dependent adhesion and MAPK activation were diminished. Furthermore, pre-treatment with fluvastatin, significantly attenuated observed Jurkat cell adhesion. These findings indicate novel mechanisms of CD4+ T-cells recruitment to activated endothelium via CD4 and CXCR4, which are modulated by statin.  相似文献   

12.
Chemokine receptor CXCR4 (also known as LESTR and fusin) has been shown to function as a coreceptor for T-cell-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have developed a binding assay to show that HIV envelope (Env) can interact with CXCR4 independently of CD4 but that this binding is markedly enhanced by the previous interaction of Env with soluble CD4. We also show that nonglycosylated HIV-1SF-2 gp120 or sodium metaperiodate-treated oligomeric gp160 from HIV-1451 bound much more readily to CXCR4 than their counterparts with intact carbohydrate residues did.In the recent past, several members of the family of chemokine receptors have been identified as cofactors for human immunodeficiency virus type 1 (HIV-1) entry (1, 6, 8, 10). Specifically, CCR5 (as well as CCR3 and CCR2b in some instances) has been shown to mediate entry of viruses characterized as macrophage tropic or dual tropic (1, 58), while CXCR4 has been shown to mediate entry of T-cell-tropic or dual-tropic strains (7, 10). While several ligands have been found for CCR5, CXC chemokine stromal derivative factor (SDF1) remains the only known ligand for CXCR4 (4, 24). Coimmunoprecipitation studies have shown that HIV-1 Env from T-cell-tropic strains forms a complex with CD4 and CXCR4 (18), but the nature of the binding events leading to the formation of this complex and the possibility of a direct interaction between HIV Env and CXCR4 remained speculative. Data from Hesselgesser et al. (15) have more recently shown that gp120 from the T-cell-tropic strains IIIB or BRU was able to compete with SDF1 for binding to CXCR4 in hNT cells (a neuronal CD4-negative cell line), indicating the possibility of a direct interaction between CXCR4 and gp120, but no information was presented on the relevance of the interaction with CD4. Other data have shown that gp120 from macrophage-tropic strains of HIV might be able to bind directly to CCR5 and that the affinity for binding between the two molecules can be increased significantly by the presence of soluble CD4 (sCD4) (34), although this effect could not be reproduced by a different group (32).We have performed the following studies to determine if HIV Env binds to CXCR4 independently of CD4 and, if so, what would be the effect of previous binding of HIV Env to sCD4.

CD4-independent binding of HIV Env to CXCR4.

The phenotypes of the T-cell lines CEM-SS and Jurkat 25 (J25) were evaluated with respect to surface expression of both CD4 and CXCR4. J25 clone 22F6 cells (3, 21) were grown in complete medium (RPMI 1640, 2% penicillin-streptomycin, 2% l-glutamine; BioWhittaker, Walkersville, Md.) containing heat-inactivated 10% fetal calf serum at 37°C in a 5% CO2 atmosphere. CEM-SS is a T-cell line that was obtained from the AIDS Research and Reference Reagent Program and maintained in complete medium. CEM-SS cells were derived from a human lymphoblastoid tumor (22, 23). Commercial monoclonal antibody (MAb) to CD4 (mouse immunoglobulin G2a [IgG2a], clone S3.5), fluorescein isothiocyanate (FITC) labeled, and the necessary isotypic controls were obtained from Caltag Laboratories (San Francisco, Calif.). Mouse MAb 12G5 against CXCR4 was raised in BALB/c mice and has been described previously (9). Goat anti-mouse IgG–FITC was purchased from Becton Dickinson (San Jose, Calif.). Flow cytometric analysis was performed on a Becton Dickinson FACScan cytometer equipped with a 15-mW argon laser emitting at 488 nm. Dead cells were detected on the basis of their scatter and eliminated from the analysis. Live cells (10,000) were analyzed for each marker. CXCR4 surface expression was determined by washing the cells taken in logarithmic growth phase with phosphate-buffered saline (PBS) containing 1% horse serum and incubating them with 10 μl of 12G5 antibody/100 μl (0.16 mg/ml) at 4°C for 30 min. The cells were then washed again in PBS, and a secondary goat anti-mouse IgG–FITC (Becton Dickinson) was incubated with the cells for another 30 min at 4°C. Finally, the cells were washed with PBS and fixed with 2% paraformaldehyde. As a control, equal amounts of mouse IgG2a (the same isotype as 12G5) were used. Both cell lines expressed significant levels of CXCR4 on their surfaces (Fig. (Fig.1),1), but only CEM-SS had measurable levels of surface CD4. This characteristic of the phenotype of J25 cells, with respect to CD4 expression, has been reported before (3). To assess binding of HIV Env to CXCR4, the following binding assay was developed. Oligomeric gp160 (ogp160) was purified from cell cultures (obtained from T. C. Van Cott (Henry M. Jackson Foundation, Rockville, Md.) infected with HIV451 (17). The cells were washed once with PBS and then incubated with ogp160 for 1 h at 37°C in RPMI medium. The cells were washed again in PBS and incubated with 10 μg of human MAb 1331A [IgG3(λ)]/ml, which is specific for the C terminus of gp120 (i.e., amino acids 510 to 516 of HIVLAI), or with a human MAb against p24 (MAb 71-31) as a control (12) for 30 min at 4°C. The secondary antibody was a goat anti-human IgG phycoerythrin labeled (Caltag). The cells were fixed in 2% paraformaldehyde, and the fluorescence intensity was determined by flow cytometry. Background was obtained by adding MAb 1331 and goat anti-human IgG, phycoerythrin labeled, to the cells in the absence of ogp160. The results of the binding assay with ogp160 from HIV451 and both cell lines are shown in Fig. Fig.2A.2A. By using the high-affinity human MAb 1331A against the C-terminal region of gp120, our assay was able to detect significant binding of the ogp160 molecule to the surfaces of both cell lines even at concentrations of only 88 nM. The very high relative affinity of MAb 1331A for the gp120 molecule appears to be critical to demonstrate this interaction, as other antibodies with lower relative affinities for gp120 were incapable of detecting this low-level binding (data not shown). The binding of ogp160 to the CD4-expressing CEM-SS cells was several orders of magnitude higher than that to the J25 cells. To prove the specificity of the binding assay for CXCR4, a synthetic form of SDF1 was produced and tested for its ability to block infection by the HIV-1 strain NL4-3 in HeLa CD4-positive long terminal repeat (LTR)-LacZ cells. These data have been published elsewhere (2). SDF1 synthesis and composition have been described previously (24). Exposure of J25 cells to SDF1 was shown to produce a dose-dependent blockage of the binding of ogp160 to the surfaces of the J25 cells (Fig. (Fig.2B),2B), indicating the specific nature of the assay. Open in a separate windowFIG. 1Phenotype analysis of CEM-SS and J25 cell lines. Thin solid line, background; thick solid line, CD4; dashed line, CXCR4.Open in a separate windowFIG. 2(A) Binding of ogp160 from HIV451 to the surfaces of CEM-SS or J25 cells. Fluorescence intensity is expressed on a logarithmic scale on the x axis, with each line representing one-half log. Concentrations of ogp160 are shown at the right of each graph. The experiments were done in duplicate to ensure consistency of results. (B) Effect of RANTES (250 nM) or increasing amounts of SDF1 (up to 250 nM) on binding of ogp160 (355 nM) to J25 cells. The results are expressed as mean channel fluorescence. Experiments were repeated twice to ensure consistency of results.To further test the fact that HIV Env binding to CXCR4 could occur independently of CD4, and to evaluate the effect of prior binding of Env to sCD4, the following experiments were performed. We preexposed CEM-SS as well as J25 cells to either the anti-CD4 antibody Leu3a (Becton Dickinson), which blocks the CD4 binding domain of HIV Env, or OKT4 (Ortho Diagnostics, Costa Mesa, Calif.), which does not block binding of HIV Env to CD4. The cells were then tested for their ability to bind ogp160 to their surfaces. As shown in Fig. Fig.3,3, OKT4 had no significant effect on the binding of ogp160 to either CEM-SS or J25 cells while Leu3a readily inhibited binding of ogp160 to CEM-SS cells but had no such effect on J25 cells. Furthermore, when ogp160 was allowed to react in advance with recombinant sCD4 produced in CHO cells (Intracel, Issaquah, Wash.) for 30 min at 4°C at a concentration of 1 μg/ml, we were able to show a clear decrease in the surface binding of ogp160 to CEM-SS cells while the opposite, an obvious enhancement in surface binding, was demonstrated for J25 cells (Fig. (Fig.3).3). Open in a separate windowFIG. 3Binding of ogp160 to CEM-SS or J25 cells after exposure of the cells to the anti-CD4 antibodies Leu3a (thin solid lines), OKT4 (dotted lines), or a combination of ogp160 with sCD4 (dashed lines). The shaded areas represent background. The thick solid lines represent binding in the absence of antibodies or sCD4. The experiments were performed in quadruplicate with similar results. Mean channel fluorescence is represented on the x axis.Taken together, these data indicate that HIV Env can bind to CXCR4 independently of CD4. On the other hand, prior interaction of HIV Env with CD4 results in a clear increase in the binding of HIV Env to CXCR4.

Relevance of the glycosylation state of HIV Env in binding to CXCR4.

The binding of HIV Env to CD4 is dependent on the appropriate conformation of the Env molecule (27), which can be significantly altered by changes in its carbohydrate content. We next tested the hypothesis that alterations in the carbohydrate moieties of Env would affect its binding to CXCR4. To do so, we used the gp120 molecule from HIVSF2, produced in CHO cells, and its counterpart, nonglycosylated HIVSF2 Env 2-3, produced in yeast strain 2150, and tested both in the binding assay with CEM-SS or J25 cells. HIVSF-2 gp120 and its nonglycosylated counterpart, Env 2-3, were obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, from Kathelyn Steimer, Chiron Corp. (13, 14, 19, 26, 2931). The results are shown in Fig. Fig.4.4. As expected, nonglycosylated HIVSF2 Env 2-3 bound to the surfaces of the CEM-SS cells to a lesser extent than did HIVSF2 gp120. On the other hand, and unexpectedly, nonglycosylated HIVSF2 Env 2-3 bound much more readily to the surfaces of the J25 cells than its glycosylated counterpart, HIVSF-2 gp120, even when used at equal molar concentrations. To determine whether these findings could be generalized to other Env molecules that lacked intact carbohydrate molecules, we treated ogp160 with sodium metaperiodate. ogp160 from HIV451 at 1.25 μg/ml was treated with sodium metaperiodate (Sigma, St. Louis, Mo.) in acetate buffer for 2 h at 4°C in the dark (33). The cells to be tested had been treated previously with 1% glycine (Sigma) for 30 min at 37°C. Such treatment results in the oxidation and cleavage of the carbohydrate hydroxyl groups without affecting the structure of the polypeptide chains (33). Nonspecific binding by the resulting aldehyde groups was prevented by blocking the target cells beforehand with 1% glycine. The results are shown in Fig. Fig.4.4. Sodium metaperiodate treatment of ogp160 resulted in a marked inhibition of the binding of ogp160 to the surfaces of the CEM-SS cells. In contrast, sodium metaperiodate treatment of ogp160 resulted in a very clear increase in the binding of HIV Env to the surfaces of the J25 cells. The preexposure of CEM-SS cells to SDF1 did not significantly affect the binding of ogp160 or sodium metaperiodate-treated ogp160. On the other hand, preexposure of J25 cells to 250 nM SDF1 resulted in a marked decrease in binding of both ogp160 and sodium metaperiodate-treated ogp160. These data indicate the specificity of the interaction of the deglycosylated form of ogp160 with CXCR4. The results of these experiments suggest that the alteration in the carbohydrate content of the HIV Env molecules resulted in a better exposure of the epitopes involved in gp120 binding to CXCR4. Open in a separate windowFIG. 4Binding of HIVSF-2 gp120 or the nonglycosylated form, HIVSF-2 Env 2-3 (Non-glyc SF-2 gp120), to CEM-SS or J25 cells. The concentration was 355 nM for both. The binding of ogp160 and sodium metaperiodate-treated ogp160 (De-glyc ogp160), each at a concentration of 355 nM, to CEM-SS or J25 cells is also shown. The two right-hand bars in each graph show results for cells preexposed to SDF1 at 150 nM. The results are expressed as mean channel fluorescence. The experiments were performed in duplicate with similar results.The understanding of the underlying mechanisms by which HIV Env, CD4, and the newly discovered HIV coreceptors interact to mediate viral entry remains a very significant issue. The way that HIV Env and CD4 interact is well established (28), and some information exists about the interaction between HIV Env, CCR5, and CD4 (34). In this paper we have shown that HIV Env is able to interact in a CD4-independent manner with CXCR4. Still, the extent of such interaction was clearly lower than that of the sCD4-HIV Env complex and CXCR4. This effect of sCD4 seems to be consistent with the observation that the complexing of this molecule with HIV Env from the strains JRFL or BAL resulted in a significant increase in the affinity of HIV Env for CCR5 (34). We speculate that this interaction between sCD4 and HIV Env results in a conformational change that exposes the binding epitopes in HIV Env relevant for binding to CXCR4, as it does with other gp120 epitopes (16). A different scenario would involve a change in both molecules, resulting in a newly formed common binding epitope. This second alternative seems less likely given our data showing CD4-independent binding of HIV Env to CXCR4, as well as previous data showing the existence of HIV strains capable of CD4-independent entry into target cells (9, 15).The gp120 molecule from HIV contains 20 potential N-linked glycosylation sites, with N-linked glycans representing at least 50% of the molecular mass. Their role in CD4 binding has been studied extensively, although some of the results remain somewhat controversial. Most of the available data seem to indicate that complete lack of glycosylation completely (20), or at least partially (25), inhibits HIV Env binding to CD4. Also, enzymatic manipulation of the carbohydrate residues results in a significant decrease but not in complete abrogation of the binding of HIV Env to CD4 (11, 20, 25). It was therefore somewhat unexpected to find that the nonglycosylated form, as well as the sodium metaperiodate-treated form, of HIV Env was able to bind in such an enhanced way to CXCR4. This would appear to reinforce the concept of the existence of a binding epitope for CXCR4 within HIV Env which is different from the one for CD4. It also suggests that the changes occurring as a consequence of the manipulation of the carbohydrate residues likely result in a better exposure of the CXCR4 binding epitope(s) within the HIV Env molecule.In summary, we have shown that HIV Env can interact with CXCR4 in a CD4-independent manner. We have also shown how the interaction of CD4 with HIV Env results in a significant increase in the binding of the latter to CXCR4 and how the alterations in the carbohydrate composition of the HIV Env molecule affect its binding to CXCR4. The complete definition of these interactions may result in novel approaches to protect against cell infection by HIV.  相似文献   

13.
Here, we describe the generation of a novel type of HIV entry inhibitor using the recently developed Designed Ankyrin Repeat Protein (DARPin) technology. DARPin proteins specific for human CD4 were selected from a DARPin DNA library using ribosome display. Selected pool members interacted specifically with CD4 and competed with gp120 for binding to CD4. DARPin proteins derived in the initial selection series inhibited HIV in a dose-dependent manner, but showed a relatively high variability in their capacity to block replication of patient isolates on primary CD4 T cells. In consequence, a second series of CD4-specific DARPins with improved affinity for CD4 was generated. These 2nd series DARPins potently inhibit infection of genetically divergent (subtype B and C) HIV isolates in the low nanomolar range, independent of coreceptor usage. Importantly, the actions of the CD4 binding DARPins were highly specific: no effect on cell viability or activation, CD4 memory cell function, or interference with CD4-independent virus entry was observed. These novel CD4 targeting molecules described here combine the unique characteristics of DARPins-high physical stability, specificity and low production costs-with the capacity to potently block HIV entry, rendering them promising candidates for microbicide development.  相似文献   

14.
Efficient downregulation of CXCR4 cell surface expression by introduction of the CD63 gene has previously been reported by us. In the present study, it was found that CD63 and its mutant efficiently interact with CXCR4 in live cells and that CD63-induced downregulation and interaction are significantly abrogated by the N- linked glycosylation inhibitor, TM. Furthermore, the downregulation and interaction were clearly attenuated by alternation of all three N- linked glycosylation sites in CD63. Either CD63 or CD63ΔN formed a complex with CXCR4 at the Golgi apparatus and the late endosomes, while CD63 GD mutants lost the ability to form a complex with CXCR4 exclusively at the Golgi apparatus. These findings suggest that CD63 interacts with CXCR4 through the N- linked glycans-portion of the CD63 protein and that the complex induces direction of CXCR4 trafficking to the endosomes/lysosomes, rather than to the plasma membrane. At the Golgi apparatus, there may be lysosome protein (CD63)-associated machinery that influences trafficking of other membrane proteins.  相似文献   

15.
The chemokine receptor CXCR4 is the principal coreceptor for X4 strains of HIV-1. We show that gp120 is unable to induce interactions between CXCR4 and G-protein in T-cells, but antagonized the agonist effect of SDF-1alpha, the natural ligand for CXCR4. Gp120 had ten times lower affinity for CXCR4 than CD4, implying that a substantial role for cellular CD4 may be to facilitate binding of the viral envelope to CXCR4. Binding of gp120 to CXCR4 was neither regulated by guanine nucleotides, nor affected by divalent cations, was temperature independent and bound to a homogenous population of CXCR4, which is characteristic for an antagonist to a G-protein coupled receptor. In contrast, SDF-1alpha binds to two affinity states of CXCR4 in T-cell membranes, which are modulated by guanine nucleotides. Binding of SDF-1alpha to CXCR4 was highly temperature dependent. Thus, the interaction of CXCR4 with HIV-1 viral envelope and chemokine exhibits fundamental differences.  相似文献   

16.
Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1)R and CB(2)R) and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2)R, but not CB(1)R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2)R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2)R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2)R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2)R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2)R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.  相似文献   

17.
G-Quadruplexes (G4s) are widely studied secondary DNA/RNA structures, naturally occurring when G-rich sequences are present. The strategic localization of G4s in genome areas of crucial importance, such as proto-oncogenes and telomeres, entails fundamental implications in terms of gene expression regulation and other important biological processes. Although thousands of small molecules capable to induce G4 stabilization have been reported over the past 20 years, approaches based on the hybridization of a synthetic probe, allowing sequence-specific G4-recognition and targeting are still rather limited. In this review, after introducing important general notions about G4s, we aim to list, explain and critically analyse in more detail the principal approaches available to target G4s by using oligonucleotides and synthetic analogues such as Locked Nucleic Acids (LNAs) and Peptide Nucleic Acids (PNAs), reporting on the most relevant examples described in literature to date.  相似文献   

18.
19.
CD4 functions as the cell-surface receptor for human immunodeficiency virus (HIV); however, the mechanism of virus entry into susceptible cells is unknown. To explore this question we used a human T lymphoblastic cell line (VB) expressing high levels of surface CD4. Neutralization of endosomal compartments (pH greater than 6.4) with lysosomotropic agents did not effectively inhibit HIV nucleocapsid entry into the cytoplasm, and virus treated at low pH (5.5) failed to induce rapid cell-to-cell fusion in uninfected cells. Electron microscopy of VB cells acutely exposed to HIV at neutral pH revealed direct fusion of the virus envelope with the plasma membrane within minutes at 4 degrees C. No endocytosed virions were visualized upon rewarming the HIV-exposed cells to 37 degrees C for as long as 60 min. These results indicate that HIV penetrates CD4-positive T cells via pH-independent membrane fusion.  相似文献   

20.
Receptor binding of HIV to the CD4 molecule is required for efficient infection of T cells, but the post-binding steps that result in penetration of HIV are not well understood. CD4 is induced to internalize upon T cell activation, and mAb to CD4 modify signal transduction and T cell activation as does HIV in some systems. It is not known whether HIV binding triggers CD4 endocytosis or whether signal transduction events are required for penetration. Selected inhibitors of signal transduction were evaluated for their effects on penetration using two assays that are dependent on penetration. After short term exposure to inhibitor and HIV, cells were analyzed for reverse-transcribed HIV DNA (DNA amplification assay), or productive infection is monitored (infectivity assay). Viral penetration was tested in the presence of H7 (protein kinase C inhibition), EGTA (extracellular Ca2+ chelation), cyclosporine A (inhibition of Ca2+/calmodulin-dependent activation), or pertussis toxin (inhibition of G protein function). All agents were used at concentrations that were inhibitory for their respective signal transduction pathways. None of the inhibitors affected viral penetration. We tracked the CD4 molecule with fluorescent probes that do not interfere with HIV binding in a system where CD4 T cells were saturated with HIV and the penetration event was relatively synchronized. Under conditions where detection of CD4 was more sensitive than the detection of HIV, HIV internalization was readily detected but CD4 internalization was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号